Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Castro, Carlos F.
    et al.
    Knutz, Paul C.
    Hopper, John R.
    Funck, Thomas
    Depositional Evolution of the Western Amundsen Basin, Arctic Ocean: Paleoceanographic and Tectonic Implications2018In: Paleoceanography and Paleoclimatology, Vol. 33, no 12, p. 1357-1382Article in journal (Refereed)
    Abstract [en]

    A new stratigraphic model and estimated sedimentation rates of the western Amundsen Basin, Arctic Ocean, are presented based on multichannel seismic reflection data, seismic refraction data, magnetic data, and integrated with the sedimentary sequence from the central Arctic Ocean, obtained during the Arctic Coring Expedition. This places new constraints on the postbreakup Cenozoic depositional history of the basin, the adjacent Lomonosov Ridge, and improves the understanding of the tectonic, climatic, and oceanographic conditions in the central Arctic region. Four distinct phases of basin development are proposed. During the Paleocene-mid-Oligocene, high sedimentation rates are linked to terrestrial input and increased pelagic deposition in a restricted basin. Deposition of sedimentary wedges and mass transport into marginal depocenters reflect a period of tectonic instability linked to compression associated with the Eurekan Orogeny in the Arctic. During the late Oligocene-early Miocene, widespread passive infill associated with hemipelagic deposition reflects a phase of limited tectonism, most likely in a freshwater estuarine setting. During the middle Miocene, mounded sedimentary buildups along the Lomonosov Ridge suggest the onset of geostrophic bottom currents that likely formed in response to a deepening and widening of the Fram Strait beginning around 18 Ma. In contrast, the Plio-Pleistocene stage is characterized by erosional features such as scarps and channels adjacent to levee accumulations, indicative of a change to a higher-energy environment. These deposits are suggested to be partly associated with dense shelf water-mass plumes driven by supercooling and brine formation over the northern Greenland continental shelf.

  • 2.
    Furrer, Reinhard
    et al.
    Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland..
    Kirchner, Nina
    Jakobsson, Martin
    A Cross-Polar Modeling Approach to Hindcast Paleo-Arctic Mega Icebergs: A Storyboard2014In: MATHEMATICS OF PLANET EARTH, 2014, p. 41-44Conference paper (Refereed)
  • 3. Hansson, Gunnar D.
    Lomonosovryggen2009Other (Refereed)
  • 4. Hell, Benjamin
    Mapping bathymetry: From measurement to applications2011Doctoral thesis, monograph (Other academic)
    Abstract [en]

    Surface elevation is likely the most fundamental property of our planet. In contrast to land topography, bathymetry, its underwater equivalent, remains uncertain in many parts of the World ocean. Bathymetry is relevant for a wide range of research topics and for a variety of societal needs. Examples, where knowing the exact water depth or the morphology of the seafloor is vital include marine geology, physical oceanography, the propagation of tsunamis and documenting marine habitats. Decisions made at administrative level based on bathymetric data include safety of maritime navigation, spatial planning along the coast, environmental protection and the exploration of the marine resources. This thesis covers different aspects of ocean mapping from the collection of echo sounding data to the application of Digital Bathymetric Models (DBMs) in Quaternary marine geology and physical oceanography. Methods related to DBM compilation are developed, namely a flexible handling and storage solution for heterogeneous sounding data and a method for the interpolation of such data onto a regular lattice. The use of bathymetric data is analyzed in detail for the Baltic Sea. With the wide range of applications found, the needs of the users are varying. However, most applications would benefit from better depth data than what is presently available. Based on glaciogenic landforms found in the Arctic Ocean seafloor morphology, a possible scenario for Quaternary Arctic Ocean glaciation is developed. Our findings suggest large ice shelves around parts of the Arctic Ocean during Marine Isotope Stage 6, 130–200 ka. Steered by bathymetry, deep water from the Amerasian Basin of the Arctic Ocean flows over the central Lomonosov Ridge into the Eurasian Basin. This water mass is traced on its continuing way towards Greenland and the Fram Strait. At the Morris Jesup Rise, bathymetry plays an important role in the partial re-circulation of the water into the Amerasian Basin.

  • 5. Jakobsson, Martin
    et al.
    Andreassen, Karin
    Bjarnadottir, Lilja Run
    Dove, Dayton
    Dowdeswell, Julian A.
    England, John H.
    Funder, Svend
    Hogan, Kelly
    Ingolfsson, Olafur
    Jennings, Anne
    Larsen, Nikolaj Krog
    Kirchner, Nina
    Landvik, Jon Y.
    Mayer, Larry
    Mikkelsen, Naja
    Moller, Per
    Niessen, Frank
    Nilsson, Johan
    O’Regan, Matt
    Polyak, Leonid
    Norgaard-Pedersen, Niels
    Stein, Ruediger
    Arctic Ocean glacial history2014In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 92, no SI, p. 40-67Article in journal (Refereed)
    Abstract [en]

    While there are numerous hypotheses concerning glacial interglacial environmental and climatic regime shifts in the Arctic Ocean, a holistic view on the Northern Hemisphere’s late Quaternary ice-sheet extent and their impact on ocean and sea-ice dynamics remains to be established. Here we aim to provide a step in this direction by presenting an overview of Arctic Ocean glacial history, based on the present state-of-the-art knowledge gained from field work and chronological studies, and with a specific focus on ice-sheet extent and environmental conditions during the Last Glacial Maximum (LGM). The maximum Quaternary extension of ice sheets is discussed and compared to LGM. We bring together recent results from the circum-Arctic continental margins and the deep central basin; extent of ice sheets and ice streams bordering the Arctic Ocean as well as evidence for ice shelves extending into the central deep basin. Discrepancies between new results and published LGM ice-sheet reconstructions in the high Arctic are highlighted and outstanding questions are identified. Finally, we address the ability to simulate the Arctic Ocean ice sheet complexes and their dynamics, including ice streams and ice shelves, using presently available ice-sheet models. Our review shows that while we are able to firmly reject some of the earlier hypotheses formulated to describe Arctic Ocean glacial conditions, we still lack information from key areas to compile the holistic Arctic Ocean glacial history. (C) 2013 The Authors. Published by Elsevier Ltd.

  • 6. Jakobsson, Martin
    et al.
    Ingolfsson, Olafur
    Long, Antony J.
    Spielhagen, Robert F.
    The dynamic Arctic Introduction2014In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 92, no SI, p. 1-8Article in journal (Refereed)
    Abstract [en]

    Research campaigns over the last decade have yielded a growing stream of data that highlight the dynamic nature of Arctic cryosphere and climate change over a range of time scales. As a consequence, rather than seeing the Arctic as a near static environment in which large scale changes occur slowly, we now view the Arctic as a system that is typified by frequent, large and abrupt changes. The traditional focus on end members in the system - glacial versus interglacial periods - has been replaced by a new interest in understanding the patterns and causes of such dynamic change. Instead of interpreting changes almost exclusively as near linear responses to external forcing (e.g. orbitally-forced climate change), research is now concentrated on the importance of strong feedback mechanisms that in our palaeo-archives often border on chaotic behaviour. The last decade of research has revealed the importance of on-off switching of ice streams, strong feedbacks between sea level and ice sheets, spatial and temporal changes in ice shelves and perennial sea ice, as well as alterations in ice sheet dynamics caused by shifting centres of mass in multi-dome ice sheets. Recent advances in dating techniques and modelling have improved our understanding of leads and lags that exist in different Arctic systems, on their interactions and the driving mechanisms of change. Future Arctic research challenges include further emphases on rapid transitions and untangling the feedback mechanisms as well as the time scales they operate on. (C) 2014 The Authors. Published by Elsevier Ltd.

  • 7. Jakobsson, Martin
    et al.
    Ingólfsson, Ólafur
    Long, Antony J.
    Spielhagen, Robert F.
    The dynamic Arctic2014In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 92, p. 1-8Article in journal (Refereed)
    Abstract [en]

    Abstract Research campaigns over the last decade have yielded a growing stream of data that highlight the dynamic nature of Arctic cryosphere and climate change over a range of time scales. As a consequence, rather than seeing the Arctic as a near static environment in which large scale changes occur slowly, we now view the Arctic as a system that is typified by frequent, large and abrupt changes. The traditional focus on end members in the system – glacial versus interglacial periods – has been replaced by a new interest in understanding the patterns and causes of such dynamic change. Instead of interpreting changes almost exclusively as near linear responses to external forcing (e.g. orbitally-forced climate change), research is now concentrated on the importance of strong feedback mechanisms that in our palaeo-archives often border on chaotic behaviour. The last decade of research has revealed the importance of on-off switching of ice streams, strong feedbacks between sea level and ice sheets, spatial and temporal changes in ice shelves and perennial sea ice, as well as alterations in ice sheet dynamics caused by shifting centres of mass in multi-dome ice sheets. Recent advances in dating techniques and modelling have improved our understanding of leads and lags that exist in different Arctic systems, on their interactions and the driving mechanisms of change. Future Arctic research challenges include further emphases on rapid transitions and untangling the feedback mechanisms as well as the time scales they operate on.

  • 8.
    Jakobsson, Martin
    et al.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Mayer, Larry A.
    Bringensparr, Caroline
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Castro, Carlos F.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Mohammad, Rezwan
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Johnson, Paul
    Ketter, Tomer
    Accettella, Daniela
    Amblas, David
    An, Lu
    Arndt, Jan Erik
    Canals, Miquel
    Casamor, Jose Luis
    Chauche, Nolwenn
    Coakley, Bernard
    Danielson, Seth
    Demarte, Maurizio
    Dickson, Mary-Lynn
    Dorschel, Boris
    Dowdeswell, Julian A.
    Dreutter, Simon
    Fremand, Alice C.
    Gallant, Dana
    Hall, John K.
    Hehemann, Laura
    Hodnesdal, Hanne
    Hong, Jongkuk
    Ivaldi, Roberta
    Kane, Emily
    Klaucke, Ingo
    Krawczyk, Diana W.
    Kristoffersen, Yngve
    Kuipers, Boele R.
    Millan, Romain
    Masetti, Giuseppe
    Morlighem, Mathieu
    Noormets, Riko
    Prescott, Megan M.
    Rebesco, Michele
    Rignot, Eric
    Semiletov, Igor
    Tate, Alex J.
    Travaglini, Paola
    Velicogna, Isabella
    Weatherall, Pauline
    Weinrebe, Wilhelm
    Willis, Joshua K.
    Wood, Michael
    Zarayskaya, Yulia
    Zhang, Tao
    Zimmermann, Mark
    Zinglersen, Karl B.
    The International Bathymetric Chart of the Arctic Ocean Version 4.02020In: Scientific Data, E-ISSN 2052-4463, Vol. 7, no 1, article id 176Article in journal (Refereed)
    Abstract [en]

    Bathymetry (seafloor depth), is a critical parameter providing the geospatial context for a multitude of marine scientific studies. Since 1997, the International Bathymetric Chart of the Arctic Ocean (IBCAO) has been the authoritative source of bathymetry for the Arctic Ocean. IBCAO has merged its efforts with the Nippon Foundation-GEBCO-Seabed 2030 Project, with the goal of mapping all of the oceans by 2030. Here we present the latest version (IBCAO Ver. 4.0), with more than twice the resolution (200 x 200m versus 500 x 500m) and with individual depth soundings constraining three times more area of the Arctic Ocean (similar to 19.8% versus 6.7%), than the previous IBCAO Ver. 3.0 released in 2012. Modern multibeam bathymetry comprises similar to 14.3% in Ver. 4.0 compared to similar to 5.4% in Ver. 3.0. Thus, the new IBCAO Ver. 4.0 has substantially more seafloor morphological information that offers new insights into a range of submarine features and processes; for example, the improved portrayal of Greenland fjords better serves predictive modelling of the fate of the Greenland Ice Sheet. Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12369314

  • 9. Jakobsson, Martin
    et al.
    Mayer, Larry
    Coakley, Bernard
    Dowdeswell, Julian A.
    Forbes, Steve
    Fridman, Boris
    Hodnesdal, Hanne
    Noormets, Riko
    Pedersen, Richard
    Rebesco, Michele
    Schenke, Hans Werner
    Zarayskaya, Yulia
    Accettella, Daniela
    Armstrong, Andrew
    Anderson, Robert M.
    Bienhoff, Paul
    Camerlenghi, Angelo
    Church, Ian
    Edwards, Margo
    Gardner, James V.
    Hall, John K.
    Hell, Benjamin
    Hestvik, Ole
    Kristoffersen, Yngve
    Marcussen, Christian
    Mohammad, Rezwan
    Mosher, David
    Nghiem, Son V.
    Teresa Pedrosa, Maria
    Travaglini, Paola G.
    Weatherall, Pauline
    The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.02012In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 39, article id L12609Article in journal (Refereed)
    Abstract [en]

    The International Bathymetric Chart of the Arctic Ocean (IBCAO) released its first gridded bathymetric compilation in 1999. The IBCAO bathymetric portrayals have since supported a wide range of Arctic science activities, for example, by providing constraint for ocean circulation models and the means to define and formulate hypotheses about the geologic origin of Arctic undersea features. IBCAO Version 3.0 represents the largest improvement since 1999 taking advantage of new data sets collected by the circum-Arctic nations, opportunistic data collected from fishing vessels, data acquired from US Navy submarines and from research ships of various nations. Built using an improved gridding algorithm, this new grid is on a 500 meter spacing, revealing much greater details of the Arctic seafloor than IBCAO Version 1.0 (2.5 km) and Version 2.0 (2.0 km). The area covered by multibeam surveys has increased from similar to 6% in Version 2.0 to similar to 11% in Version 3.0. Citation: Jakobsson, M., et al. (2012), The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophys. Res. Lett., 39, L12609, doi:10.1029/2012GL052219.

  • 10. Löwemark, L.
    et al.
    Marz, C.
    O'Regan, M.
    Gyllencreutz, R.
    Arctic Ocean Mn-stratigraphy: genesis, synthesis and inter-basin correlation2014In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 92Article in journal (Refereed)
    Abstract [en]

    Across the Arctic Ocean, late Quaternary deep marine sediments are characterized by the occurrence of brownish layers intercalated with yellowish to olive gray sediments. These layers show enhanced levels of bioturbation, peaks in Mn content, and typically contain elevated abundances of planktonic and benthic micro-and nannofossils. It was early surmised that these layers were deposited under interglacial conditions and that their cyclical downcore occurrence could be correlated to the global benthic oxygen isotope curve. However, the synchronicity of Mn layers with interglacial conditions and the underlying mechanisms responsible for their formation remain controversial. Here we compile and synthesize findings of the last decades with several recent studies that shed light on issues such as the sources of Mn to the Arctic Ocean, the processes and pathways for Mn to the deep sea, the chemical processes active in the sediment, and the spatial and temporal distribution of Mn-rich layers in Arctic deep marine sediments. Budget calculations show that about 90% of Mn input to the Arctic Ocean originates from Arctic rivers or coastal erosion, two sources effectively shut down during mid-to late Quaternary glacial intervals by continental ice sheets blocking or redirecting the rivers and vast subaerial exposure of the shelf areas. Thus, the strong late Quaternary interglacial-glacial cyclicity in Mn content is clearly an input-related signal, and only secondarily influenced by chemical processes in the water column and in the sediment. On the shelves, the Mn undergoes repeated geochemical recycling caused by the high organic carbon content in the sediments before it is ultimately exported to the deep basins where scavenging processes in the water column effectively bring the Mn to the sea floor in the form of Mn (oxyhydr)oxides. The close synchronicity with enhanced bioturbation and elevated micro and nannofossil abundances shows that the Mn peaks are preserved at a stratigraphic level closely corresponding to the interglacial intervals. However, under certain biogeochemical conditions, Mn (oxyhydr)oxides may diagenetically become both dissolved and re-precipitated deep in the sediments, as shown by pore water analyses and X-ray radiograph studies. Dissolution is particularly conspicuous in late Quaternary sediments from the Lomonosov Ridge, where in rapidly deposited coarse grained intervals (diamictons) with elevated total organic carbon (TOC) contents, Mn appears almost completely removed from within the glacial sediments, and also the surrounding interglacial sediments. Correspondingly, bundles of closely spaced, mm-thick, Mn-rich horizontal bands are observed in sediment otherwise devoid of indicators for interglacial conditions, suggesting that these bands were purely formed by diagenetic processes redistributing the Mn from deeper sediment layers. This type of diagenetic Mn redistribution within the sediment can be recognized in XRF-core scanner data combined with sedimentological information from X-ray radiographs, while pore water data are highly promising if clear diagenetic features in the sediment are missing. With this increasing ability to recognize intervals where a diagenetic overprint exists in the Mn record, the recently improved understanding of the Mn cycle in the Arctic Ocean provides a conceptual paleoenvironmental framework in which carefully applied Mn stratigraphy can provide a powerful correlation tool, when combined with other paleoceanographic proxies and sedimentological data. (C) 2013 Elsevier Ltd. All rights reserved.

  • 11. Löwemark, L.
    et al.
    O'Regan, M.
    Hanebuth, T. J. J.
    Jakobsson, M.
    Late Quaternary spatial and temporal variability in Arctic deep-sea bioturbation and its relation to Mn cycles2012In: Palaeogeography, Palaeoclimatology, Palaeoecology, ISSN 0031-0182, E-ISSN 1872-616X, Vol. 365Article in journal (Refereed)
    Abstract [en]

    Changes in intensity and composition of bioturbation and trace fossils in deep-sea settings are directly related to changes in environmental parameters such as food availability, bottom water oxygenation, or substrate consistency. Because trace fossils are practically always preserved in situ, and are often present in environments where other environmental indicators are scarce or may have been compromised or removed by diagenetic processes, the trace fossils provide an important source of paleoenvironmental information in regions such as the deep Arctic Ocean. Detailed analysis of X-ray radiographs from 12 piston and gravity cores from a transect spanning from the Makarov Basin to the Yermak Plateau via the Lomonosov Ridge, the Morris Jesup Rise, and the Gakkel Ridge reveal both spatial and temporal variations in an ichnofauna consisting of Chondrites, Nereites, Phycosiphon, Planolites, Scolicia, Trichichnus, Zoophycos, as well as deformational biogenic structures. The spatial variability in abundance and diversity is in close correspondence to observed patterns in the distribution of modern benthos, suggesting that food availability and food flux to the sea floor are the most important parameters controlling variations in bioturbation in the Arctic Ocean. The most diverse ichnofaunas were observed at sites on the central Lomonosov Ridge that today have partially ice free conditions and relatively high summer productivity. In contrast, the most sparse ichnofauna was observed in the ice-infested region on the Lomonosov Ridge north of Greenland. Since primary productivity, and therefore also the food flux at a certain location, is ultimately controlled by the geographical position in relation to ice margin and the continental shelves, temporal variations in abundance and diversity of trace fossils have the potential to reveal changes in food flux, and consequently sea ice conditions on glacial-interglacial time scales. Down core analysis reveal clearly increased abundance and diversity during interglacial/interstadial intervals that were identified through strongly enhanced Mn levels and the presence of micro- and nannofossils. Warm stages are characterized by larger trace fossils such as Scolicia, Planolites or Nereites, while cold stages typically display an ichnofauna dominated by small deep penetrating trace fossils such as Chondrites or Trichichnus. The presence of biogenic structures in glacial intervals clearly show that the Arctic deep waters must have remained fairly well ventilated also during glacials, thereby lending support to the hypothesis that the conspicuous brown layers rich in Mn which are found ubiquitously over the Arctic basins are related to input from rivers and coastal erosion during sea level high-stands rather than redox processes in the water column and on the sea floor. However, the X-ray radiograph study also revealed the presence of apparently post-sedimentary, diagenetically formed Mn-layers which are not directly related to Mn input from rivers and shelves. These observations thus bolster the hypothesis that the bioturbated, brownish Mn-rich layers can be used for stratigraphic correlation over large distances in the Arctic Ocean, but only if post sedimentary diagenetic layers can be identified and accounted for in the Mn-cycle stratigraphy. (C) 2012 Elsevier B.V. All rights reserved.

  • 12. Löwemark, Ludvig
    Ethological analysis of the trace fossil Zoophycos: hints from the Arctic Ocean2012In: Lethaia: an international journal of palaeontology and stratigraphy, ISSN 0024-1164, E-ISSN 1502-3931, Vol. 45, no 2, p. 290-298Article in journal (Refereed)
    Abstract [en]

    The distribution of the trace fossil Zoophycos in Quaternary marine sediments from the Arctic Ocean was studied in twelve piston and gravity cores retrieved during the Swedish icebreaker expeditions YMER80, Arctic Ocean- 96 and LOMROG I & II. The sampled cores span an area from the Makarov Basin to the Fram Strait. Zoophycos was only found in two cores taken at more than 2 km water depth on the slope of the Lomonosov Ridge, but was absent in cores obtained at shallower depth, confirming earlier observations of the trace maker's bathymetric preferences. The two cores containing Zoophycos are characterized by quiet sedimentation and slightly enhanced food flux compared with the general Arctic. The occurrence of Zoophycos in these cores in a setting that is characterized by extreme seasonal variations in food flux due to the total ice coverage during winters and high primary productivity during the long summer days, is interpreted to be a cache- behaviour response to pulsed flux of food to the benthic realm.

  • 13. Pérez, Lara F.
    et al.
    Jakobsson, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Funck, Thomas
    Andresen, Katrine J.
    Nielsen, Tove
    O'Regan, Matt
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Mørk, Finn
    Late Quaternary sedimentary processes in the central Arctic Ocean inferred from geophysical mapping2020In: Geomorphology, ISSN 0169-555X, E-ISSN 1872-695X, Vol. 369, article id 107309Article in journal (Refereed)
    Abstract [en]

    Cryospheric events in the Arctic Ocean have been largely studied through the imprints of ice sheets, ice shelves and icebergs in the seafloor morphology and sediment stratigraphy. Subglacial morphologies have been identified in the shallowest regions of the Arctic Ocean, up to 1200 m water depth, revealing the extent and dynamics of Arctic ice sheets during the last glacial periods. However, less attention has been given to sedimentary features imaged in the vicinity of the ice-grounded areas. Detailed interpretation of the sparse available swath bathymetry and sub-bottom profiles from the Lomonosov Ridge and the Amundsen Basin shows the occurrence of mass transport deposits (MTDs) and sediment waves in the central Arctic Ocean. The waxing and waning ice sheets and shelves in the Arctic Ocean have influenced the distribution of MTDs in the vicinity of grounding-ice areas, i.e. along the crest of Lomonosov Ridge. Due to the potential of Arctic sediments to hold gas hydrates, their destabilization should not be ruled out as trigger for sediment instability. Sediment waves formed by the interaction of internal waves that propagate along water mass interfaces with the bathymetric barrier of Lomonosov Ridge. This work describes the distribution and formation mechanisms of MTDs and sediment waves in the central Arctic Ocean in relation to grounding ice and internal waves between water masses, respectively. The distribution of these features provides new insight into past cryospheric and oceanographic conditions of the central Arctic Ocean.

  • 14. Wietz, Matthias
    et al.
    Månsson, Maria
    Bowman, Jeff S
    Blom, Nikolaj
    Ng, Yin
    Gram, Lone
    Wide distribution of closely related, antibiotic-producing Arthrobacter strains throughout the Arctic Ocean.2012In: Applied and Environmental Microbiology, ISSN 0099-2240, E-ISSN 1098-5336, Vol. 78, no 6, p. 2039-42Article in journal (Refereed)
    Abstract [en]

    We isolated 16 antibiotic-producing bacterial strains throughout the central Arctic Ocean, including seven Arthrobacter spp. with almost identical 16S rRNA gene sequences. These strains were numerically rare, as revealed using 454 pyrosequencing libraries. Arthrobacter spp. produced arthrobacilins A to C under different culture conditions, but other, unidentified compounds likely contributed to their antibiotic activity.

1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf