Ändra sökning
Avgränsa sökresultatet
1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Bengtsson, Fia
    et al.
    Rydin, Hakan
    Baltzer, Jennifer L.
    Bragazza, Luca
    Bu, Zhao-Jun
    Caporn, Simon J. M.
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Flatberg, Kjell Ivar
    Galanina, Olga
    Galka, Mariusz
    Ganeva, Anna
    Goia, Irina
    Goncharova, Nadezhda
    Hajek, Michal
    Haraguchi, Akira
    Harris, Lorna I.
    Humphreys, Elyn
    Jirousek, Martin
    Kajukalo, Katarzyna
    Karofeld, Edgar
    Koronatova, Natalia G.
    Kosykh, Natalia P.
    Laine, Anna M.
    Lamentowicz, Mariusz
    Lapshina, Elena
    Limpens, Juul
    Linkosalmi, Maiju
    Ma, Jin-Ze
    Mauritz, Marguerite
    Mitchell, Edward A. D.
    Munir, Tariq M.
    Natali, Susan M.
    Natcheva, Rayna
    Payne, Richard J.
    Philippov, Dmitriy A.
    Rice, Steven K.
    Robinson, Sean
    Robroek, Bjorn J. M.
    Rochefort, Line
    Singer, David
    Stenoien, Hans K.
    Tuittila, Eeva-Stiina
    Vellak, Kai
    Waddington, James Michael
    Granath, Gustaf
    Environmental drivers of Sphagnum growth in peatlands across the Holarctic region2021Ingår i: Journal of Ecology, ISSN 0022-0477, E-ISSN 1365-2745, Vol. 109, nr 1, s. 417-431Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The relative importance of global versus local environmental factors for growth and thus carbon uptake of the bryophyte genusSphagnum-the main peat-former and ecosystem engineer in northern peatlands-remains unclear. We measured length growth and net primary production (NPP) of two abundantSphagnumspecies across 99 Holarctic peatlands. We tested the importance of previously proposed abiotic and biotic drivers for peatland carbon uptake (climate, N deposition, water table depth and vascular plant cover) on these two responses. Employing structural equation models (SEMs), we explored both indirect and direct effects of drivers onSphagnumgrowth. Variation in growth was large, but similar within and between peatlands. Length growth showed a stronger response to predictors than NPP. Moreover, the smaller and denserSphagnum fuscumgrowing on hummocks had weaker responses to climatic variation than the larger and looserSphagnum magellanicumgrowing in the wetter conditions. Growth decreased with increasing vascular plant cover within a site. Between sites, precipitation and temperature increased growth forS. magellanicum. The SEMs indicate that indirect effects are important. For example, vascular plant cover increased with a deeper water table, increased nitrogen deposition, precipitation and temperature. These factors also influencedSphagnumgrowth indirectly by affecting moss shoot density. Synthesis. Our results imply that in a warmer climate,S. magellanicumwill increase length growth as long as precipitation is not reduced, whileS. fuscumis more resistant to decreased precipitation, but also less able to take advantage of increased precipitation and temperature. Such species-specific sensitivity to climate may affect competitive outcomes in a changing environment, and potentially the future carbon sink function of peatlands.

  • 2. Doherty, Stacey Jarvis
    et al.
    Barbato, Robyn A.
    Grandy, A. Stuart
    Thomas, W. Kelley
    Monteux, Sylvain
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Johansson, Margareta
    Ernakovich, Jessica G.
    The Transition From Stochastic to Deterministic Bacterial Community Assembly During Permafrost Thaw Succession2020Ingår i: Frontiers in Microbiology, E-ISSN 1664-302X, Vol. 11, artikel-id 596589Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Northern high latitudes are warming twice as fast as the global average, and permafrost has become vulnerable to thaw. Changes to the environment during thaw leads to shifts in microbial communities and their associated functions, such as greenhouse gas emissions. Understanding the ecological processes that structure the identity and abundance (i.e., assembly) of pre- and post-thaw communities may improve predictions of the functional outcomes of permafrost thaw. We characterized microbial community assembly during permafrost thaw using in situ observations and a laboratory incubation of soils from the Storflaket Mire in Abisko, Sweden, where permafrost thaw has occurred over the past decade. In situ observations indicated that bacterial community assembly was driven by randomness (i.e., stochastic processes) immediately after thaw with drift and dispersal limitation being the dominant processes. As post-thaw succession progressed, environmentally driven (i.e., deterministic) processes became increasingly important in structuring microbial communities where homogenizing selection was the only process structuring upper active layer soils. Furthermore, laboratory-induced thaw reflected assembly dynamics immediately after thaw indicated by an increase in drift, but did not capture the long-term effects of permafrost thaw on microbial community dynamics. Our results did not reflect a link between assembly dynamics and carbon emissions, likely because respiration is the product of many processes in microbial communities. Identification of dominant microbial community assembly processes has the potential to improve our understanding of the ecological impact of permafrost thaw and the permafrost-climate feedback.

  • 3.
    Gavazov, Konstantin
    et al.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Canarini, Alberto
    Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria.
    Jassey, Vincent E.J.
    ECOLAB, Laboratoire D'Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France.
    Mills, Robert
    Department of Environment and Geography, University of York, York, United Kingdom.
    Richter, Andreas
    Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria.
    Sundqvist, Maja K.
    Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Väisänen, Maria
    Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland; Arctic Centre, University of Lapland, Rovaniemi, Finland.
    Walker, Tom W.N.
    Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland; Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
    Wardle, David A.
    Asian School of the Environment, Nanyang Technological University, Singapore.
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Plant-microbial linkages underpin carbon sequestration in contrasting mountain tundra vegetation types2022Ingår i: Soil Biology and Biochemistry, ISSN 0038-0717, E-ISSN 1879-3428, Vol. 165, artikel-id 108530Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Tundra ecosystems hold large stocks of soil organic matter (SOM), likely due to low temperatures limiting rates of microbial SOM decomposition more than those of SOM accumulation from plant primary productivity and microbial necromass inputs. Here we test the hypotheses that distinct tundra vegetation types and their carbon supply to characteristic rhizosphere microbes determine SOM cycling independent of temperature. In the subarctic Scandes, we used a three-way factorial design with paired heath and meadow vegetation at each of two elevations, and with each combination of vegetation type and elevation subjected during one growing season to either ambient light (i.e., ambient plant productivity), or 95% shading (i.e., reduced plant productivity). We assessed potential above- and belowground ecosystem linkages by uni- and multivariate analyses of variance, and structural equation modelling. We observed direct coupling between tundra vegetation type and microbial community composition and function, which underpinned the ecosystem's potential for SOM storage. Greater primary productivity at low elevation and ambient light supported higher microbial biomass and nitrogen immobilisation, with lower microbial mass-specific enzymatic activity and SOM humification. Congruently, larger SOM at lower elevation and in heath sustained fungal-dominated microbial communities, which were less substrate-limited, and invested less into enzymatic SOM mineralisation, owing to a greater carbon-use efficiency (CUE). Our results highlight the importance of tundra plant community characteristics (i.e., productivity and vegetation type), via their effects on soil microbial community size, structure and physiology, as essential drivers of SOM turnover. The here documented concerted patterns in above- and belowground ecosystem functioning is strongly supportive of using plant community characteristics as surrogates for assessing tundra carbon storage potential and its evolution under climate and vegetation changes.

  • 4.
    Keuper, Frida
    et al.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Wild, Birgit
    Kummu, Matti
    Beer, Christian
    Blume-Werry, Gesche
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Fontaine, Sébastien
    Gavazov, Konstantin
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Gentsch, Norman
    Guggenberger, Georg
    Hugelius, Gustaf
    Jalava, Mika
    Koven, Charles
    Krab, Eveline J.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Kuhry, Peter
    Monteux, Sylvain
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Richter, Andreas
    Shahzad, Tanvir
    Weedon, James T.
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming2020Ingår i: Nature Geoscience, ISSN 1752-0894, E-ISSN 1752-0908, Vol. 13, nr 8, s. 560-565Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    As global temperatures continue to rise, a key uncertainty of climate projections is the microbial decomposition of vast organic carbon stocks in thawing permafrost soils. Decomposition rates can accelerate up to fourfold in the presence of plant roots, and this mechanism—termed the rhizosphere priming effect—may be especially relevant to thawing permafrost soils as rising temperatures also stimulate plant productivity in the Arctic. However, priming is currently not explicitly included in any model projections of future carbon losses from the permafrost area. Here, we combine high-resolution spatial and depth-resolved datasets of key plant and permafrost properties with empirical relationships of priming effects from living plants on microbial respiration. We show that rhizosphere priming amplifies overall soil respiration in permafrost-affected ecosystems by ~12%, which translates to a priming-induced absolute loss of ~40 Pg soil carbon from the northern permafrost area by 2100. Our findings highlight the need to include fine-scale ecological interactions in order to accurately predict large-scale greenhouse gas emissions, and suggest even tighter restrictions on the estimated 200 Pg anthropogenic carbon emission budget to keep global warming below 1.5 °C.

  • 5.
    Krab, Eveline J
    et al.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Monteux, Sylvain
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Weedon, James T.
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Plant expansion drives bacteria and collembola communities under winter climate change in frost-affected tundra2019Ingår i: Soil Biology and Biochemistry, ISSN 0038-0717, E-ISSN 1879-3428, Vol. 138, artikel-id UNSP 107569Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    At high latitudes, winter warming facilitates vegetation expansion into barren frost-affected soils. The interplay of changes in winter climate and plant presence may alter soil functioning via effects on decomposers. Responses of decomposer soil fauna and microorganisms to such changes likely differ from each other, since their life histories, dispersal mechanisms and microhabitats vary greatly.

    We investigated the relative impacts of short-term winter warming and increases in plant cover on bacteria and collembola community composition in cryoturbated, non-sorted circle tundra. By covering non-sorted circles with insulating gardening fibre cloth (fleeces) or using stone walls accumulating snow, we imposed two climate-change scenarios: snow accumulation increased autumn-to-late winter soil temperatures (−1 cm) by 1.4 °C, while fleeces warmed soils during that period by 1 °C and increased spring temperatures by 1.1 °C. Summer bacteria and collembola communities were sampled from within-circle locations differing in vegetation abundance and soil properties.

    Two years of winter warming had no effects on either decomposer community. Instead, their community compositions were strongly determined by sampling location: communities in barren circle centres were distinct from those in vegetated outer rims, while communities in sparsely vegetated patches of circle centres were intermediate. Diversity patterns indicate that collembola communities are tightly linked to plant presence while bacteria communities correlated with soil properties.

    Our results thus suggest that direct effects of short-term winter warming are likely to be minimal, but that vegetation encroachment on barren cryoturbated ground will affect decomposer community composition substantially. At decadal timescales, collembola community changes may follow relatively fast after warming-driven plant establishment into barren areas, whereas bacteria communities may take longer to respond. If shifts in decomposer community composition are indicative for changes in their activity, vegetation overgrowth will likely have much stronger effects on soil functioning in frost-affected tundra than short-term winter warming.

  • 6. Lembrechts, Jonas J.
    et al.
    Aalto, Juha
    Ashcroft, Michael B.
    De Frenne, Pieter
    Kopecky, Martin
    Lenoir, Jonathan
    Luoto, Miska
    Maclean, Ilya M. D.
    Roupsard, Olivier
    Fuentes-Lillo, Eduardo
    Garcia, Rafael A.
    Pellissier, Loic
    Pitteloud, Camille
    Alatalo, Juha M.
    Smith, Stuart W.
    Bjork, Robert G.
    Muffler, Lena
    Backes, Amanda Ratier
    Cesarz, Simone
    Gottschall, Felix
    Okello, Joseph
    Urban, Josef
    Plichta, Roman
    Svatek, Martin
    Phartyal, Shyam S.
    Wipf, Sonja
    Eisenhauer, Nico
    Puscas, Mihai
    Turtureanu, Pavel D.
    Varlagin, Andrej
    Dimarco, Romina D.
    Jump, Alistair S.
    Randall, Krystal
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Larson, Keith
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Walz, Josefine
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Vitale, Luca
    Svoboda, Miroslav
    Higgens, Rebecca Finger
    Halbritter, H.
    Curasi, Salvatore R.
    Klupar, Ian
    Koontz, Austin
    Pearse, William D.
    Simpson, Elizabeth
    Stemkovski, Michael
    Graae, Bente Jessen
    Sorensen, Mia Vedel
    Hoye, Toke T.
    Fernandez Calzado, M. Rosa
    Lorite, Juan
    Carbognani, Michele
    Tomaselli, Marcello
    Forte, T'ai G. W.
    Petraglia, Alessandro
    Haesen, Stef
    Somers, Ben
    Van Meerbeek, Koenraad
    Bjorkman, Mats P.
    Hylander, Kristoffer
    Merinero, Sonia
    Gharun, Mana
    Buchmann, Nina
    Dolezal, Jiri
    Matula, Radim
    Thomas, Andrew D.
    Bailey, Joseph J.
    Ghosn, Dany
    Kazakis, George
    de Pablo, Miguel A.
    Kemppinen, Julia
    Niittynen, Pekka
    Rew, Lisa
    Seipel, Tim
    Larson, Christian
    Speed, James D. M.
    Ardo, Jonas
    Cannone, Nicoletta
    Guglielmin, Mauro
    Malfasi, Francesco
    Bader, Maaike Y.
    Canessa, Rafaella
    Stanisci, Angela
    Kreyling, Juergen
    Schmeddes, Jonas
    Teuber, Laurenz
    Aschero, Valeria
    Ciliak, Marek
    Malis, Frantisek
    De Smedt, Pallieter
    Govaert, Sanne
    Meeussen, Camille
    Vangansbeke, Pieter
    Gigauri, Khatuna
    Lamprecht, Andrea
    Pauli, Harald
    Steinbauer, Klaus
    Winkler, Manuela
    Ueyama, Masahito
    Nunez, Martin A.
    Ursu, Tudor-Mihai
    Haider, Sylvia
    Wedegartner, Ronja E. M.
    Smiljanic, Marko
    Trouillier, Mario
    Wilmking, Martin
    Altman, Jan
    Bruna, Josef
    Hederova, Lucia
    Macek, Martin
    Man, Matej
    Wild, Jan
    Vittoz, Pascal
    Partel, Meelis
    Barancok, Peter
    Kanka, Robert
    Kollar, Jozef
    Palaj, Andrej
    Barros, Agustina
    Mazzolari, Ana C.
    Bauters, Marijn
    Boeckx, Pascal
    Benito Alonso, Jose-Luis
    Zong, Shengwei
    Di Cecco, Valter
    Sitkova, Zuzana
    Tielboerger, Katja
    van den Brink, Liesbeth
    Weigel, Robert
    Homeier, Juergen
    Dahlberg, C. Johan
    Medinets, Sergiy
    Medinets, Volodymyr
    De Boeck, Hans J.
    Portillo-Estrada, Miguel
    Verryckt, Lore T.
    Milbau, Ann
    Daskalova, Gergana N.
    Thomas, Haydn J. D.
    Myers-Smith, Isla H.
    Blonder, Benjamin
    Stephan, Jorg G.
    Descombes, Patrice
    Zellweger, Florian
    Frei, Esther R.
    Heinesch, Bernard
    Andrews, Christopher
    Dick, Jan
    Siebicke, Lukas
    Rocha, Adrian
    Senior, Rebecca A.
    Rixen, Christian
    Jimenez, Juan J.
    Boike, Julia
    Pauchard, Anibal
    Scholten, Thomas
    Scheffers, Brett
    Klinges, David
    Basham, Edmund W.
    Zhang, Jian
    Zhang, Zhaochen
    Geron, Charly
    Fazlioglu, Fatih
    Candan, Onur
    Sallo Bravo, Jhonatan
    Hrbacek, Filip
    Laska, Kamil
    Cremonese, Edoardo
    Haase, Peter
    Moyano, Fernando E.
    Rossi, Christian
    Nijs, Ivan
    SoilTemp: A global database of near-surface temperature2020Ingår i: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 26, nr 11, s. 6616-6629Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long‐term average thermal conditions at coarse spatial resolutions only. Hence, many climate‐forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold‐air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free‐air temperatures, microclimatic ground and near‐surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near‐surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.

  • 7.
    Lett, Signe
    et al.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Teuber, Laurenz M.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Krab, Eveline J
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Michelsen, Anders
    Olofsson, Johan
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Nilsson, Marie-Charlotte
    Wardle, David A.
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Mosses modify effects of warmer and wetter conditions on tree seedlings at the alpine treeline2020Ingår i: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 26, nr 10, s. 5754-5766Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Climate warming enables tree seedling establishment beyond the current alpine treeline, but to achieve this, seedlings have to establish within existing tundra vegetation. In tundra, mosses are a prominent feature, known to regulate soil temperature and moisture through their physical structure and associated water retention capacity. Moss presence and species identity might therefore modify the impact of increases in temperature and precipitation on tree seedling establishment at the arctic‐alpine treeline. We followed Betula pubescens and Pinus sylvestris seedling survival and growth during three growing seasons in the field. Tree seedlings were transplanted along a natural precipitation gradient at the subarctic‐alpine treeline in northern Sweden, into plots dominated by each of three common moss species and exposed to combinations of moss removal and experimental warming by open‐top chambers (OTCs). Independent of climate, the presence of feather moss, but not Sphagnum , strongly supressed survival of both tree species. Positive effects of warming and precipitation on survival and growth of B. pubescens seedlings occurred in the absence of mosses and as expected, this was partly dependent on moss species. P. sylvestris survival was greatest at high precipitation, and this effect was more pronounced in Sphagnum than in feather moss plots irrespective of whether the mosses had been removed or not. Moss presence did not reduce the effects of OTCs on soil temperature. Mosses therefore modified seedling response to climate through other mechanisms, such as altered competition or nutrient availability. We conclude that both moss presence and species identity pose a strong control on seedling establishment at the alpine treeline, and that in some cases mosses weaken climate‐change effects on seedling establishment. Changes in moss abundance and species composition therefore have the potential to hamper treeline expansion induced by climate warming.

  • 8.
    Monteux, Sylvain
    et al.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Keuper, Frida
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Fontaine, Sebastien
    Gavazov, Konstantin
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Hallin, Sara
    Juhanson, Jaanis
    Krab, Eveline J
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Revaillot, Sandrine
    Verbruggen, Erik
    Walz, Josefine
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Weedon, James T.
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Carbon and nitrogen cycling in Yedoma permafrost controlled by microbial functional limitations2020Ingår i: Nature Geoscience, ISSN 1752-0894, E-ISSN 1752-0908, Vol. 13, nr 12, s. 794-798Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Warming-induced microbial decomposition of organic matter in permafrost soils constitutes a climate-change feedback of uncertain magnitude. While physicochemical constraints on soil functioning are relatively well understood, the constraints attributable to microbial community composition remain unclear. Here we show that biogeochemical processes in permafrost can be impaired by missing functions in the microbial community-functional limitations-probably due to environmental filtering of the microbial community over millennia-long freezing. We inoculated Yedoma permafrost with a functionally diverse exogenous microbial community to test this mechanism by introducing potentially missing microbial functions. This initiated nitrification activity and increased CO2 production by 38% over 161 days. The changes in soil functioning were strongly associated with an altered microbial community composition, rather than with changes in soil chemistry or microbial biomass. The present permafrost microbial community composition thus constrains carbon and nitrogen biogeochemical processes, but microbial colonization, likely to occur upon permafrost thaw in situ, can alleviate such functional limitations. Accounting for functional limitations and their alleviation could strongly increase our estimate of the vulnerability of permafrost soil organic matter to decomposition and the resulting global climate feedback. Carbon dioxide emissions from permafrost thaw are substantially enhanced by relieving microbial functional limitations, according to incubation experiments on Yedoma permafrost.

  • 9.
    Olid, Carolina
    et al.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Klaminder, Jonatan
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Monteux, Sylvain
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Johansson, Margareta
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Decade of experimental permafrost thaw reduces turnover of young carbon and increases losses of old carbon, without affecting the net carbon balance2020Ingår i: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 26, nr 10, s. 5886-5898Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Thicker snowpacks and their insulation effects cause winter-warming and invoke thaw of permafrost ecosystems. Temperature-dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net C balance remains uncertain. This is because winter effects are rarely integrated with C fluxes during the snow-free season and because predicting the net C balance from both surface processes and thawing deep layers remains challenging. In this study, we quantified changes in the long-term net C balance (net ecosystem production) in a subarctic peat plateau subjected to 10 years of experimental winter-warming. By combining(210)Pb and(14)Cdating of peat cores with peat growth models, we investigated thawing effects on year-round primary production and C losses through respiration and leaching from both shallow and deep peat layers. Winter-warming and permafrost thaw had no effect on the net C balance, but strongly affected gross C fluxes. Carbon losses through decomposition from the upper peat were reduced as thawing of permafrost induced surface subsidence and subsequent waterlogging. However, primary production was also reduced likely due to a strong decline in bryophytes cover while losses from the old C pool almost tripled, caused by the deepened active layer. Our findings highlight the need to estimate long-term responses of whole-year production and decomposition processes to thawing, both in shallow and deep soil layers, as they may contrast and lead to unexpected net effects on permafrost C storage.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 10. Ramirez, Kelly S.
    et al.
    Knight, Christopher G.
    de Hollander, Mattias
    Brearley, Francis Q.
    Constantinides, Bede
    Cotton, Anne
    Creer, Si
    Crowther, Thomas W.
    Davison, John
    Delgado-Baquerizo, Manuel
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Elliott, David R.
    Fox, Graeme
    Griffiths, Robert I.
    Hale, Chris
    Hartman, Kyle
    Houlden, Ashley
    Jones, David L.
    Krab, Eveline J.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Maestre, Fernando T.
    McGuire, Krista L.
    Monteux, Sylvain
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Orr, Caroline H.
    van der Putten, Wim H.
    Roberts, Ian S.
    Robinson, David A.
    Rocca, Jennifer D.
    Rowntree, Jennifer
    Schlaeppi, Klaus
    Shepherd, Matthew
    Singh, Brajesh K.
    Straathof, Angela L.
    Bhatnagar, Jennifer M.
    Thion, Cecile
    van der Heijden, Marcel G. A.
    de Vries, Franciska T.
    Detecting macroecological patterns in bacterial communities across independent studies of global soils2018Ingår i: Nature Microbiology, E-ISSN 2058-5276, Vol. 3, nr 2, s. 189-196Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The emergence of high-throughput DNA sequencing methods provides unprecedented opportunities to further unravel bacterial biodiversity and its worldwide role from human health to ecosystem functioning. However, despite the abundance of sequencing studies, combining data from multiple individual studies to address macroecological questions of bacterial diversity remains methodically challenging and plagued with biases. Here, using a machine-learning approach that accounts for differences among studies and complex interactions among taxa, we merge 30 independent bacterial data sets comprising 1,998 soil samples from 21 countries. Whereas previous meta-analysis efforts have focused on bacterial diversity measures or abundances of major taxa, we show that disparate amplicon sequence data can be combined at the taxonomy-based level to assess bacterial community structure. We find that rarer taxa are more important for structuring soil communities than abundant taxa, and that these rarer taxa are better predictors of community structure than environmental factors, which are often confounded across studies. We conclude that combining data from independent studies can be used to explore bacterial community dynamics, identify potential 'indicator' taxa with an important role in structuring communities, and propose hypotheses on the factors that shape bacterial biogeography that have been overlooked in the past.

  • 11.
    Sundqvist, Maja K.
    et al.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Sanders, Nathan J.
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Lindén, Elin
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Metcalfe, Daniel B.
    Newman, Gregory S.
    Olofsson, Johan
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Wardle, David A.
    Classen, Aimee T.
    Responses of tundra plant community carbon flux to experimental warming, dominant species removal and elevation2020Ingår i: Functional Ecology, ISSN 0269-8463, E-ISSN 1365-2435, Vol. 34, nr 7, s. 1497-1506Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Rising temperatures can influence ecosystem processes both directly and indirectly, through effects on plant species and communities. An improved understanding of direct versus indirect effects of warming on ecosystem processes is needed for robust predictions of the impacts of climate change on terrestrial ecosystem carbon (C) dynamics.To explore potential direct and indirect effects of warming on C dynamics in arctic tundra heath, we established a warming (open top chambers) and dominant plant species (Empetrum hermaphroditum Hagerup) removal experiment at a high and low elevation site. We measured the individual and interactive effects of warming, dominant species removal and elevation on plant species cover, the normalized difference vegetation index (NDVI), leaf area index (LAI), temperature, soil moisture and instantaneous net ecosystem CO2 exchange.We hypothesized that ecosystems would be stronger CO2 sinks at the low elevation site, and that warming and species removal would weaken the CO2 sink because warming should increase ecosystem respiration (ER) and species removal should reduce gross primary productivity (GPP). Furthermore, we hypothesized that warming and species removal would have the greatest impact on processes at the high elevation where site temperature should be most limiting and dominant species may buffer the overall community to environmental stress more compared to the low elevation site where plants are more likely to compete with the dominant species.The instantaneous CO2 flux, which reflected a weak CO2 sink, was similar at both elevations. Neither experimental warming nor dominant species removal significantly changed GPP or instantaneous net ecosystem CO2 exchange even though species removal significantly reduced ER, NDVI and LAI.Our results show that even the loss of dominant plant species may not result in significant landscape‐scale responses of net ecosystem CO2 exchange to warming. They also show that NDVI and LAI may be limited in their ability to predict changes in GPP in these tundra heaths systems. Our study highlights the need for more detailed vegetation analyses and ground‐truthed measurements in order to accurately predict direct and indirect impacts of climatic change on ecosystem C dynamics.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 12.
    Sytiuk, Anna
    et al.
    Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS, Toulouse, France.
    Céréghino, Regis
    Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS, Toulouse, France.
    Hamard, Samuel
    Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS, Toulouse, France.
    Delarue, Frédéric
    Sorbonne Univ., CNRS, EPHE, PSL, UMR 7619 METIS, Paris, France.
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Küttim, Martin
    Inst. of Ecology, School of Natural Sciences and Health, Tallinn Univ., Tallinn, Estonia.
    Lamentowicz, Mariusz
    Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz Univ. in Poznań, Poznań, Poland.
    Pourrut, Bertrand
    Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS, Toulouse, France.
    Robroek, Bjorn J. M.
    Aquatic Ecology&Environmental Biology, Radboud Inst. for Biological and Environmental Sciences, Faculty of Science, Radboud Univ. Nijmegen, Nijmegen, Netherlands.
    Tuittila, Eeva-Stiina
    Biological Sciences, Faculty of Natural and Environmental Sciences, Inst. for Life Sciences, Univ. of Southampton, Southampton, United Kingdom.
    Jassey, Vincent E. J.
    Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS, Toulouse, France.
    Biochemical traits enhance the trait concept in Sphagnum ecology2022Ingår i: Oikos, ISSN 0030-1299, E-ISSN 1600-0706, nr 4, artikel-id e09119Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Sphagnum mosses are key to northern peatland carbon sequestration. They have a range of morphological and anatomical characteristics that allow them to cope with environmental stress. Sphagnum also produces a plethora of biochemicals that may prevent stress-induced cell-damage. However, the linkages between Sphagnum anatomical, morphological and biochemical traits (i.e. metabolites, pigments and antioxidant enzyme activities) are poorly known, neither are their joint responses to environmental change. Here, we quantify and link an array of Sphagnum anatomical, morphological and biochemical traits in five Sphagnum-dominated peatlands distributed along a latitudinal gradient in Europe, covering a range of regional and local environmental conditions. Sphagnum morphological and anatomical traits were intrinsically linked to Sphagnum metabolites and enzyme activities, and these relationships were driven by shared responses to local and regional environmental factors. More particularly, we found that Sphagnum traits can be grouped into four clusters related to growth, biomass, defense and water stress tolerance. We used regional and local environmental conditions data to further show that biochemicals and their specific linkages with some morphological traits describe dimensions of physiology not captured by anatomical and morphological traits alone. These results suggest that Sphagnum morphology and function is rooted in the metabolome, and that incorporating biochemicals into the functional trait space concept can enhance our mechanistic understanding and predictive power in Sphagnum ecology.

  • 13.
    Väisänen, Maria
    et al.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Krab, Eveline J
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Monteux, Sylvain
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Teuber, Laurenz M.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Gavazov, Konstantin
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Weedon, James T.
    Keuper, Frida
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Meshes in mesocosms control solute and biota exchange in soils: A step towards disentangling (a)biotic impacts on the fate of thawing permafrost2020Ingår i: Agriculture, Ecosystems & Environment. Applied Soil Ecology, ISSN 0929-1393, E-ISSN 1873-0272, Vol. 151, artikel-id UNSP 103537Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Environmental changes feedback to climate through their impact on soil functions such as carbon (C) and nutrient sequestration. Abiotic conditions and the interactions between above- and belowground biota drive soil responses to environmental change but these (a)biotic interactions are challenging to study. Nonetheless, better understanding of these interactions would improve predictions of future soil functioning and the soil-climate feedback and, in this context, permafrost soils are of particular interest due to their vast soil C-stores. We need new tools to isolate abiotic (microclimate, chemistry) and biotic (roots, fauna, microorganisms) components and to identify their respective roles in soil processes. We developed a new experimental setup, in which we mimic thermokarst (permafrost thaw-induced soil subsidence) by fitting thawed permafrost and vegetated active layer sods side by side into mesocosms deployed in a subarctic tundra over two growing seasons. In each mesocosm, the two sods were separated from each other by barriers with different mesh sizes to allow varying degrees of physical connection and, consequently, (a)biotic exchange between active layer and permafrost. We demonstrate that our mesh-approach succeeded in controlling 1) lateral exchange of solutes between the two soil types, 2) colonization of permafrost by microbes but not by soil fauna, and 3) ingrowth of roots into permafrost. In particular, experimental thermokarst induced a similar to 60% decline in permafrost nitrogen (N) content, a shift in soil bacteria and a rapid buildup of root biomass (+33.2 g roots m(-2) soil). This indicates that cascading plant-soil-microbe linkages are at the heart of biogeochemical cycling in thermokarst events. We propose that this novel setup can be used to explore the effects of (a)biotic ecosystem components on focal biogeochemical processes in permafrost soils and beyond.

1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf