This is the first attempt to budget average current annual carbon (C) and associated greenhouse gas (GHG) exchanges and transfers in a subarctic landscape, the Lake Torneträsk catchment in northern Sweden. This is a heterogeneous area consisting of almost 4000âkm2 of mixed heath, birch and pine forest, and mires, lakes and alpine ecosystems. The magnitudes of atmospheric exchange of carbon in the form of the GHGs, CO2 and CH4 in these various ecosystems differ significantly, ranging from little or no flux in barren ecosystems over a small CO2 sink function and low rates of CH4 exchange in the heaths to significant CO2 uptake in the forests and also large emissions of CH4 from the mires and small lakes. The overall catchment budget, given the size distribution of the individual ecosystem types and a first approximation of run-off as dissolved organic carbon, reveals a landscape currently with a significant sink capacity for atmospheric CO2. This sink capacity is, however, extremely sensitive to environmental changes, particularly those that affect the birch forest ecosystem. Climatic drying or wetting and episodic events such as insect outbreaks may cause significant changes in the sink function. Changes in the sources of CH4 through increased permafrost melting may also easily change the sign of the current radiative forcing, due to the stronger impact per gram of CH4 relative to CO2. Hence, to access impacts on climate, the atmospheric C balance alone has to be weighed in a radiative forcing perspective. When considering the emissions of CH4 from the mires and lakes as CO2 equivalents, the Torneträsk catchment is currently a smaller sink of radiative forcing, but it can still be estimated as representing the equivalent of approximately 14â000 average Swedish inhabitants’ emissions of CO2. This can be compared with the carbon emissions of less than 200 people who live permanently in the catchment, although this comparison disregards substantial emissions from the non-Swedish tourism and transportation activities.
Sustained release of methane (CH4) to the atmosphere from thawing Arctic permafrost may be a positive and significant feedback to climate warming. Atmospheric venting of CH4 from the East Siberian Arctic Shelf (ESAS) was recently reported to be on par with flux from the Arctic tundra; however, the future scale of these releases remains unclear. Here, based on results of our latest observations, we show that CH4 emissions from this shelf are likely to be determined by the state of subsea permafrost degradation. We observed CH4 emissions from two previously understudied areas of the ESAS: the outer shelf, where subsea permafrost is predicted to be discontinuous or mostly degraded due to long submergence by seawater, and the near shore area, where deep/open taliks presumably form due to combined heating effects of seawater, river run-off, geothermal flux and pre-existing thermokarst. CH4 emissions from these areas emerge from largely thawed sediments via strong flare-like ebullition, producing fluxes that are orders of magnitude greater than fluxes observed in background areas underlain by largely frozen sediments. We suggest that progression of subsea permafrost thawing and decrease in ice extent could result in a significant increase in CH4 emissions from the ESAS.