Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Keuper, Frida
    et al.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Wild, Birgit
    Kummu, Matti
    Beer, Christian
    Blume-Werry, Gesche
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Fontaine, Sébastien
    Gavazov, Konstantin
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Gentsch, Norman
    Guggenberger, Georg
    Hugelius, Gustaf
    Jalava, Mika
    Koven, Charles
    Krab, Eveline J.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Kuhry, Peter
    Monteux, Sylvain
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Richter, Andreas
    Shahzad, Tanvir
    Weedon, James T.
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming2020Inngår i: Nature Geoscience, ISSN 1752-0894, E-ISSN 1752-0908, Vol. 13, nr 8, s. 560-565Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    As global temperatures continue to rise, a key uncertainty of climate projections is the microbial decomposition of vast organic carbon stocks in thawing permafrost soils. Decomposition rates can accelerate up to fourfold in the presence of plant roots, and this mechanism—termed the rhizosphere priming effect—may be especially relevant to thawing permafrost soils as rising temperatures also stimulate plant productivity in the Arctic. However, priming is currently not explicitly included in any model projections of future carbon losses from the permafrost area. Here, we combine high-resolution spatial and depth-resolved datasets of key plant and permafrost properties with empirical relationships of priming effects from living plants on microbial respiration. We show that rhizosphere priming amplifies overall soil respiration in permafrost-affected ecosystems by ~12%, which translates to a priming-induced absolute loss of ~40 Pg soil carbon from the northern permafrost area by 2100. Our findings highlight the need to include fine-scale ecological interactions in order to accurately predict large-scale greenhouse gas emissions, and suggest even tighter restrictions on the estimated 200 Pg anthropogenic carbon emission budget to keep global warming below 1.5 °C.

  • 2.
    Monteux, Sylvain
    et al.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Keuper, Frida
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Fontaine, Sebastien
    Gavazov, Konstantin
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Hallin, Sara
    Juhanson, Jaanis
    Krab, Eveline J
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Revaillot, Sandrine
    Verbruggen, Erik
    Walz, Josefine
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Weedon, James T.
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Carbon and nitrogen cycling in Yedoma permafrost controlled by microbial functional limitations2020Inngår i: Nature Geoscience, ISSN 1752-0894, E-ISSN 1752-0908, Vol. 13, nr 12, s. 794-798Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Warming-induced microbial decomposition of organic matter in permafrost soils constitutes a climate-change feedback of uncertain magnitude. While physicochemical constraints on soil functioning are relatively well understood, the constraints attributable to microbial community composition remain unclear. Here we show that biogeochemical processes in permafrost can be impaired by missing functions in the microbial community-functional limitations-probably due to environmental filtering of the microbial community over millennia-long freezing. We inoculated Yedoma permafrost with a functionally diverse exogenous microbial community to test this mechanism by introducing potentially missing microbial functions. This initiated nitrification activity and increased CO2 production by 38% over 161 days. The changes in soil functioning were strongly associated with an altered microbial community composition, rather than with changes in soil chemistry or microbial biomass. The present permafrost microbial community composition thus constrains carbon and nitrogen biogeochemical processes, but microbial colonization, likely to occur upon permafrost thaw in situ, can alleviate such functional limitations. Accounting for functional limitations and their alleviation could strongly increase our estimate of the vulnerability of permafrost soil organic matter to decomposition and the resulting global climate feedback. Carbon dioxide emissions from permafrost thaw are substantially enhanced by relieving microbial functional limitations, according to incubation experiments on Yedoma permafrost.

  • 3.
    Väisänen, Maria
    et al.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Krab, Eveline J
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Monteux, Sylvain
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Teuber, Laurenz M.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Gavazov, Konstantin
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Weedon, James T.
    Keuper, Frida
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Meshes in mesocosms control solute and biota exchange in soils: A step towards disentangling (a)biotic impacts on the fate of thawing permafrost2020Inngår i: Agriculture, Ecosystems & Environment. Applied Soil Ecology, ISSN 0929-1393, E-ISSN 1873-0272, Vol. 151, artikkel-id UNSP 103537Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Environmental changes feedback to climate through their impact on soil functions such as carbon (C) and nutrient sequestration. Abiotic conditions and the interactions between above- and belowground biota drive soil responses to environmental change but these (a)biotic interactions are challenging to study. Nonetheless, better understanding of these interactions would improve predictions of future soil functioning and the soil-climate feedback and, in this context, permafrost soils are of particular interest due to their vast soil C-stores. We need new tools to isolate abiotic (microclimate, chemistry) and biotic (roots, fauna, microorganisms) components and to identify their respective roles in soil processes. We developed a new experimental setup, in which we mimic thermokarst (permafrost thaw-induced soil subsidence) by fitting thawed permafrost and vegetated active layer sods side by side into mesocosms deployed in a subarctic tundra over two growing seasons. In each mesocosm, the two sods were separated from each other by barriers with different mesh sizes to allow varying degrees of physical connection and, consequently, (a)biotic exchange between active layer and permafrost. We demonstrate that our mesh-approach succeeded in controlling 1) lateral exchange of solutes between the two soil types, 2) colonization of permafrost by microbes but not by soil fauna, and 3) ingrowth of roots into permafrost. In particular, experimental thermokarst induced a similar to 60% decline in permafrost nitrogen (N) content, a shift in soil bacteria and a rapid buildup of root biomass (+33.2 g roots m(-2) soil). This indicates that cascading plant-soil-microbe linkages are at the heart of biogeochemical cycling in thermokarst events. We propose that this novel setup can be used to explore the effects of (a)biotic ecosystem components on focal biogeochemical processes in permafrost soils and beyond.

1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf