Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Mekhaldi, Florian
    et al.
    Muscheler, Raimund
    Adolphi, Florian
    Aldahan, Ala
    Beer, Juerg
    McConnell, Joseph R.
    Possnert, Goran
    Sigl, Michael
    Svensson, Anders
    Synal, Hans-Arno
    Welten, Kees C.
    Woodruff, Thomas E.
    Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/42015In: Nature Communications, E-ISSN 2041-1723, Vol. 6, article id 8611Article in journal (Refereed)
    Abstract [en]

    The origin of two large peaks in the atmospheric radiocarbon (C-14) concentration at AD 774/5 and 993/4 is still debated. There is consensus, however, that these features can only be explained by an increase in the atmospheric C-14 production rate due to an extraterrestrial event. Here we provide evidence that these peaks were most likely produced by extreme solar events, based on several new annually resolved Be-10 measurements from both Arctic and Antarctic ice cores. Using ice core Cl-36 data in pair with Be-10, we further show that these solar events were characterized by a very hard energy spectrum with high fluxes of solar protons with energy above 100MeV. These results imply that the larger of the two events (AD 774/5) was at least five times stronger than any instrumentally recorded solar event. Our findings highlight the importance of studying the possibility of severe solar energetic particle events.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf