Planned maintenance
A system upgrade is planned for 24/9-2024, at 12:00-14:00. During this time DiVA will be unavailable.
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Bengtsson, Fia
    et al.
    Rydin, Hakan
    Baltzer, Jennifer L.
    Bragazza, Luca
    Bu, Zhao-Jun
    Caporn, Simon J. M.
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Flatberg, Kjell Ivar
    Galanina, Olga
    Galka, Mariusz
    Ganeva, Anna
    Goia, Irina
    Goncharova, Nadezhda
    Hajek, Michal
    Haraguchi, Akira
    Harris, Lorna I.
    Humphreys, Elyn
    Jirousek, Martin
    Kajukalo, Katarzyna
    Karofeld, Edgar
    Koronatova, Natalia G.
    Kosykh, Natalia P.
    Laine, Anna M.
    Lamentowicz, Mariusz
    Lapshina, Elena
    Limpens, Juul
    Linkosalmi, Maiju
    Ma, Jin-Ze
    Mauritz, Marguerite
    Mitchell, Edward A. D.
    Munir, Tariq M.
    Natali, Susan M.
    Natcheva, Rayna
    Payne, Richard J.
    Philippov, Dmitriy A.
    Rice, Steven K.
    Robinson, Sean
    Robroek, Bjorn J. M.
    Rochefort, Line
    Singer, David
    Stenoien, Hans K.
    Tuittila, Eeva-Stiina
    Vellak, Kai
    Waddington, James Michael
    Granath, Gustaf
    Environmental drivers of Sphagnum growth in peatlands across the Holarctic region2021In: Journal of Ecology, ISSN 0022-0477, E-ISSN 1365-2745, Vol. 109, no 1, p. 417-431Article in journal (Refereed)
    Abstract [en]

    The relative importance of global versus local environmental factors for growth and thus carbon uptake of the bryophyte genusSphagnum-the main peat-former and ecosystem engineer in northern peatlands-remains unclear. We measured length growth and net primary production (NPP) of two abundantSphagnumspecies across 99 Holarctic peatlands. We tested the importance of previously proposed abiotic and biotic drivers for peatland carbon uptake (climate, N deposition, water table depth and vascular plant cover) on these two responses. Employing structural equation models (SEMs), we explored both indirect and direct effects of drivers onSphagnumgrowth. Variation in growth was large, but similar within and between peatlands. Length growth showed a stronger response to predictors than NPP. Moreover, the smaller and denserSphagnum fuscumgrowing on hummocks had weaker responses to climatic variation than the larger and looserSphagnum magellanicumgrowing in the wetter conditions. Growth decreased with increasing vascular plant cover within a site. Between sites, precipitation and temperature increased growth forS. magellanicum. The SEMs indicate that indirect effects are important. For example, vascular plant cover increased with a deeper water table, increased nitrogen deposition, precipitation and temperature. These factors also influencedSphagnumgrowth indirectly by affecting moss shoot density. Synthesis. Our results imply that in a warmer climate,S. magellanicumwill increase length growth as long as precipitation is not reduced, whileS. fuscumis more resistant to decreased precipitation, but also less able to take advantage of increased precipitation and temperature. Such species-specific sensitivity to climate may affect competitive outcomes in a changing environment, and potentially the future carbon sink function of peatlands.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf