Change search
Refine search result
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Barrientos, Natalia
    et al.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Lear, Caroline H.
    Jakobsson, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Stranne, Christian
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    O'Regan, Matt
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Cronin, Thomas M.
    Gukov, Aleksandr Y.
    Coxall, Helen K.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Arctic Ocean benthic foraminifera Mg/Ca ratios and global Mg/Ca-temperature calibrations: New constraints at low temperatures2018In: Geochimica et Cosmochimica Acta, ISSN 0016-7037, E-ISSN 1872-9533, Vol. 236, p. 240-259Article in journal (Refereed)
    Abstract [en]

    We explore the use of Mg/Ca ratios in six Arctic Ocean benthic foraminifera species as bottom water palaeothermometers and expand published Mg/Ca-temperature calibrations to the coldest bottom temperatures (<1 °C). Foraminifera were analyzed in surface sediments at 27 sites in the Chukchi Sea, East Siberian Sea, Laptev Sea, Lomonosov Ridge and Petermann Fjord. The sites span water depths of 52–1157 m and bottom water temperatures (BWT) of −1.8 to +0.9 °C. Benthic foraminifera were alive at time of collection, determined from Rose Bengal (RB) staining. Three infaunal and three epifaunal species were abundant enough for Mg/Ca analysis. As predicted by theory and empirical evidence, cold water Arctic Ocean benthic species produce low Mg/Ca ratios, the exception being the porcelaneous species Quinqueloculina arctica. Our new data provide important constraints at the cold end (<1 °C) when added to existing global datasets. The refined calibrations based on the new and published global data appear best supported for the infaunal species Nonionella labradorica (Mg/Ca = 1.325 ± 0.01 × e^(0.065 ± 0.01 × BWT), r2 = 0.9), Cassidulina neoteretis (Mg/Ca = 1.009 ± 0.02 × e^(0.042 ± 0.01 × BWT), r2 = 0.6) and Elphidium clavatum (Mg/Ca = 0.816 ± 0.06 + 0.125 ± 0.05 × BWT, r2 = 0.4). The latter is based on the new Arctic data only. This suggests that Arctic Ocean infaunal taxa are suitable for capturing at least relative and probably semi-quantitative past changes in BWT. Arctic Oridorsalis tener Mg/Ca data are combined with existing O. umbonatus Mg/Ca data from well saturated core-tops from other regions to produce a temperature calibration with minimal influence of bottom water carbonate saturation state (Mg/Ca = 1.317 ± 0.03 × e^(0.102 ± 0.01 BWT), r2 = 0.7). The same approach for Cibicidoides wuellerstorfi yields Mg/Ca = 1.043 ± 0.03 × e^(0.118 ± 0.1 BWT), r2 = 0.4. Mg/Ca ratios of the porcelaneous epifaunal species Q. arctica show a clear positive relationship between Mg/Ca and Δ[CO32−] indicating that this species is not suitable for Mg/Ca-palaeothermometry at low temperatures, but may be useful in reconstructing carbonate system parameters through time.

  • 2. Cronin, T. M.
    et al.
    Olds, B. M.
    Regnier, A. M.
    O'Regan, Matthew
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Gemery, L.
    Detlef, H.
    Pearce, C.
    Jakobsson, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Holocene paleoceanography and glacial history of Lincoln Sea, Ryder Glacier, Northern Greenland, based on foraminifera and ostracodes2022In: Marine Micropaleontology, ISSN 0377-8398, E-ISSN 1872-6186, Vol. 175, article id 102158Article in journal (Refereed)
    Abstract [en]

    We reconstructed Holocene paleoceanography of the Sherard Osborn Fjord (SOF), N Greenland, and Lincoln Sea in the eastern Arctic Ocean using sediment properties and micropaleontology from cores obtained during the Ryder 2019 Expedition. Our aims were to better understand faunal indicators of water mass influence on Ryder Glacier and the Lincoln Sea at water depths >500 m. Benthic microfaunal reflect glacio-marine interval during late deglaciation ~10.5 to 8.5 ka (kiloannum) during the Holocene Thermal Maximum (HTM) with dominant benthic foraminiferal species Cassidulina neoteretis, Cassidulina reniforme, and the ostracode Rabilimis mirabilis. Casssidulina neoteretis is considered an indicator of Atlantic Water (AW) throughout the Arctic Ocean and Nordic Seas; C. reniforme reflects glacio-marine conditions from the retreating Ryder Glacier. Deglaciation was followed by a period of elevated productivity and diverse ostracode faunal assemblages that suggest AW influence from 8.5 to 6 ka in the Lincoln Sea and inside SOF. The Holocene occurrence of the ostracode species Acetabulastoma arcticum, that appears in low numbers in the Lincoln Sea and briefly (~ 4–3 ka) in SOF, reflects the presence of variable sea ice in this region. Based on the similarities of the Lincoln Sea and fjord ostracodes to modern and glacial-deglacial faunas from the central Arctic Ocean, the AW influence likely originates from recirculation of AW water from the central Arctic Basin. In general, our results suggest a strong but temporally varying influence of AW during the entire 10.5 kyr record of the Lincoln Sea and SOF.

  • 3. Detlef, Henrieka
    et al.
    Reilly, Brendan
    Jennings, Anne
    Mørk Jensen, Mads
    O'Regan, Matt
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Glasius, Marianne
    Olsen, Jesper
    Jakobsson, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Pearce, Christof
    Holocene sea-ice dynamics in Petermann Fjord in relation to ice tongue stability and Nares Strait ice arch formation2021In: The Cryosphere, ISSN 1994-0416, E-ISSN 1994-0424, Vol. 15, no 9, p. 4357-4380Article in journal (Refereed)
    Abstract [en]

    The Petermann 2015 expedition to Petermann Fjord and adjacent Hall Basin recovered a transect of cores, extending from Nares Strait to underneath the 48 km long ice tongue of Petermann glacier, offering a unique opportunity to study ice-ocean-sea ice interactions at the interface of these realms. First results suggest that no ice tongue existed in Petermann Fjord for large parts of the Holocene, raising the question of the role of the ocean and the marine cryosphere in the collapse and re-establishment of the ice tongue. Here we use a multi-proxy approach (sea-ice-related biomarkers, total organic carbon and its carbon isotopic composition, and benthic and planktonic foraminiferal abundances) to explore Holocene sea ice dynamics at OD1507-03TC-41GC-03PC in outer Petermann Fjord. Our results are in line with a tight coupling of the marine and terrestrial cryosphere in this region and, in connection with other regional sea ice reconstructions, give insights into the Holocene evolution of ice arches and associated landfast ice in Nares Strait. The late stages of the regional Holocene Thermal Maximum (6900-5500 cal yr BP) were marked by reduced seasonal sea ice concentrations in Nares Strait and the lack of ice arch formation. This was followed by a transitional period towards Neoglacial cooling from 5500-3500 cal yr BP, where a southern ice arch might have formed, but an early seasonal breakup and late formation likely caused a prolonged open water season and enhanced pelagic productivity in Nares Strait. Between 3500 and 1400 cal yr BP, regional records suggest the formation of a stable northern ice arch only, with a short period from 2500-2100 cal yr BP where a southern ice arch might have formed intermittently in response to atmospheric cooling spikes. A stable southern ice arch, or even double arching, is also inferred for the period after 1400 cal yr BP. Thus, both the inception of a small Petermann ice tongue at similar to 2200 cal yr BP and its rapid expansion at similar to 600 cal yr BP are preceded by a transition towards a southern ice arch regime with landfast ice formation in Nares Strait, suggesting a stabilizing effect of landfast sea ice on Petermann Glacier.

  • 4.
    Jakobsson, Martin
    et al.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Pearce, Christof
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Cronin, Thomas M.
    Backman, Jan
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Anderson, Leif G.
    Barrientos, Natalia
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Björk, Göran
    Coxall, Helen
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    de Boer, Agatha
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Mayer, Larry A.
    Mörth, Carl-Magnus
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Nilsson, Johan
    Stockholms universitet, Meteorologiska institutionen (MISU).
    Rattray, Jayne E.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Stranne, Christian
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Semiletov, Igor
    O'Regan, Matt
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records2017In: Climate of the Past, ISSN 1814-9324, E-ISSN 1814-9332, Vol. 13, no 8, p. 991-1005Article in journal (Refereed)
    Abstract [en]

    The Bering Strait connects the Arctic and Pacific oceans and separates the North American and Asian landmasses. The presently shallow (similar to 53 m) strait was exposed during the sea level lowstand of the last glacial period, which permitted human migration across a land bridge today referred to as the Bering Land Bridge. Proxy studies (stable isotope composition of foraminifera, whale migration into the Arctic Ocean, mollusc and insect fossils and paleobotanical data) have suggested a range of ages for the Bering Strait reopening, mainly falling within the Younger Dryas stadial (12.9-11.7 cal ka BP). Here we provide new information on the deglacial and post-glacial evolution of the Arctic-Pacific connection through the Bering Strait based on analyses of geological and geophysical data from Herald Canyon, located north of the Bering Strait on the Chukchi Sea shelf region in the western Arctic Ocean. Our results suggest an initial opening at about 11 cal ka BP in the earliest Holocene, which is later than in several previous studies. Our key evidence is based on a well-dated core from Herald Canyon, in which a shift from a near-shore environment to a Pacific-influenced open marine setting at around 11 cal ka BP is observed. The shift corresponds to meltwater pulse 1b (MWP1b) and is interpreted to signify relatively rapid breaching of the Bering Strait and the submergence of the large Bering Land Bridge. Although the precise rates of sea level rise cannot be quantified, our new results suggest that the late deglacial sea level rise was rapid and occurred after the end of the Younger Dryas stadial.

  • 5. Jennings, Anne
    et al.
    Reilly, Brendan
    Andrews, John
    Hogan, Kelly
    Walczak, Maureen
    Jakobsson, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Stoner, Joseph
    Mix, Alan
    Nicholls, Keith W.
    O'Regan, Matthew
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Prins, Maarten A.
    Troelstra, Simon R.
    Modern and early Holocene ice shelf sediment facies from Petermann Fjord and northern Nares Strait, northwest Greenland2022In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 283, article id 107460Article in journal (Refereed)
    Abstract [en]

    Based on sediment cores and geophysical data collected from Petermann Fjord and northern Nares Strait, NW Greenland, an Arctic ice shelf sediment facies is presented that distinguishes sub and pro ice shelf environments. Sediment cores were collected from sites beneath the present day Petermann Ice Tongue (PIT) and in deglacial sediments of northern Nares Strait with a focus on understanding the glacial and oceanographic history over the last 11,000 cal yr BP. The modern sub ice shelf sediment facies in Petermann Fjord is laminated and devoid of coarse clasts (IRD) due to strong basal melting that releases debris (debris filtering) from the basal ice at the grounding zone driven by buoyant subglacial meltwater and entrained Atlantic Water. Laminated sediments in the deep basin proximal to the gounding zone comprise layers of fine mud formed by suspension settling from turbid meltwater plumes (plumites) interrupted by normally graded very fine sand to medium silt layers with sharp basal contacts and rip-up clasts of mud, interpreted as turbidites. An inner fjord sill limits distribution of sediment gravity flows from the grounding zone to the deep inner fjord basin, such that sites on the inner sill and beyond the ice tongue largely only comprise plumites. Bioturbation and foraminiferal abundances increase with distance from the grounding zone. The benthic foraminiferal species, Elphidium clavatum is absent beneath the ice tongue, but dominant in the turbid meltwater influenced environment beyond the ice tongue. The very sparse IRD in sediments beneath the PIT and in the fjord beyond the PIT derives mainly from englacial debris in the ice tongue, side valley glaciers, rock falls from the steep fjord walls and sea ice.

    We use the modern ice shelf sediment facies characteristics to infer the past presence of ice shelves in northern Nares Strait using analyses of sediment cores from several cruises (OD1507, HLY03, 2001LSSL, RYDER19). On bathymetric highs, bioturbated mud with dispersed IRD overlies a 10–15 m thick, distinctly laminated silt and clay unit with rare coarse clasts and sparse foraminifera which forms a sediment drape of nearly uniform thickness. We interpret these laminated sediments to represent glaciomarine deposition by meltwater plumes emanating from ice streams that terminated in floating ice shelves. IRD layers, shifts in sediment composition (qXRD, MS and XRF) and faunal assemblage changes in the laminated unit document periods of ice-shelf instability sometimes, but not always, coupled with grounding zone retreat. Our deglacial reconstruction, including ice shelves, begins ∼10.7 cal ka BP, with confluent ice streams grounded in Hall Basin fronted by the Robeson Channel ice shelf. Ice shelf breakup and grounding zone retreat to relatively stable grounding zones at Kennedy Channel and the mouth of Petermann Fjord was accomplished by 9.4 cal ka BP when the Hall Basin ice shelf was established. This ice shelf broke up and reformed once prior to the final break up at 8.5 to 8.4 cal ka BP marking ice stream collapse, separation of Greenland and Innuitian ice sheets, and the opening of Nares Strait for Arctic-Atlantic throughflow. The Petermann ice shelf remained in Hall Basin until the Petermann Glacier retreated from the fjord mouth ∼7.1 cal ka BP. The resilience of these northern ice streams to strong early Holocene insolation and subsurface Atlantic Water advection is attributed to their northern aspect, buttressing by narrow passages, and high ice flux from the Greenland Ice Sheet (GIS).

  • 6.
    Martens, Jannik
    et al.
    Stockholms universitet, Institutionen för miljövetenskap och analytisk kemi.
    Wild, Birgit
    Stockholms universitet, Institutionen för miljövetenskap och analytisk kemi.
    Pearce, Christof
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Tesi, Tommaso
    Stockholms universitet, Institutionen för miljövetenskap och analytisk kemi.
    Andersson, August
    Stockholms universitet, Institutionen för miljövetenskap och analytisk kemi.
    Bröder, Lisa
    Stockholms universitet, Institutionen för miljövetenskap och analytisk kemi.
    O'Regan, Matt
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Jakobsson, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Sköld, Martin
    Stockholms universitet, Matematiska institutionen.
    Gemery, Laura
    Cronin, Thomas M.
    Semiletov, Igor
    Dudarev, Oleg V.
    Gustafsson, Örjan
    Stockholms universitet, Institutionen för miljövetenskap och analytisk kemi.
    Remobilization of Old Permafrost Carbon to Chukchi Sea Sediments During the End of the Last Deglaciation2019In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 33, no 1, p. 2-14Article in journal (Refereed)
    Abstract [en]

    Climate warming is expected to destabilize permafrost carbon (PF-C) by thaw-erosion and deepening of the seasonally thawed active layer and thereby promote PF-C mineralization to CO2 and CH4. A similar PF-C remobilization might have contributed to the increase in atmospheric CO2 during deglacial warming after the last glacial maximum. Using carbon isotopes and terrestrial biomarkers (Delta C-14, delta C-13, and lignin phenols), this study quantifies deposition of terrestrial carbon originating from permafrost in sediments from the Chukchi Sea (core SWERUS-L2-4-PC1). The sediment core reconstructs remobilization of permafrost carbon during the late Allerod warm period starting at 13,000 cal years before present (BP), the Younger Dryas, and the early Holocene warming until 11,000 cal years BP and compares this period with the late Holocene, from 3,650 years BP until present. Dual-carbon-isotope-based source apportionment demonstrates that Ice Complex Deposit-ice- and carbon-rich permafrost from the late Pleistocene (also referred to as Yedoma)-was the dominant source of organic carbon (66 +/- 8%; mean +/- standard deviation) to sediments during the end of the deglaciation, with fluxes more than twice as high (8.0 +/- 4.6 g.m(-2).year(-1)) as in the late Holocene (3.1 +/- 1.0 g.m(-2).year(-1)). These results are consistent with late deglacial PF-C remobilization observed in a Laptev Sea record, yet in contrast with PF-C sources, which at that location were dominated by active layer material from the Lena River watershed. Release of dormant PF-C from erosion of coastal permafrost during the end of the last deglaciation indicates vulnerability of Ice Complex Deposit in response to future warming and sea level changes.

  • 7. Miller, Clint M.
    et al.
    Dickens, Gerald R.
    Jakobsson, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Johansson, Carina
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Koshurnikov, Andrey
    O'Regan, Matt
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Muschitiello, Francesco
    Stranne, Christian
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Mörth, Carl-Magnus
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Pore water geochemistry along continental slopes north of the East Siberian Sea: inference of low methane concentrations2017In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 14, no 12, p. 2929-2953Article in journal (Refereed)
    Abstract [en]

    Continental slopes north of the East Siberian Sea potentially hold large amounts of methane (CH4) in sediments as gas hydrate and free gas. Although release of this CH4 to the ocean and atmosphere has become a topic of discussion, the region remains sparingly explored. Here we present pore water chemistry results from 32 sediment cores taken during Leg 2 of the 2014 joint Swedish-Russian-US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions (SWERUS-C3) expedition. The cores come from depth transects across the slope and rise extending between the Mendeleev and the Lomonosov ridges, north of Wrangel Island and the New Siberian Islands, respectively. Upward CH4 flux towards the seafloor, as inferred from profiles of dissolved sulfate (SO42-), alkalinity, and the δ13C of dissolved inorganic carbon (DIC), is negligible at all stations east of 143 degrees E longitude. In the upper 8m of these cores, downward SO42- flux never exceeds 6.2 mol m-2 kyr-1, the upward alkalinity flux never exceeds 6.8 mol m-2 kyr-1, and δ13C composition of DIC (δ13C-DIC) only moderately decreases with depth (-3.6‰m-1 on average). Moreover, upon addition of Zn acetate to pore water samples, ZnS did not precipitate, indicating a lack of dissolved H2S. Phosphate, ammonium, and metal profiles reveal that metal oxide reduction by organic carbon dominates the geochemical environment and supports very low organic carbon turnover rates. A single core on the Lomonosov Ridge differs, as diffusive fluxes for SO42- and alkalinity were 13.9 and 11.3 mol m-2 kyr-1, respectively, the δ13C-DIC gradient was 5.6‰ m-1, and Mn2+ reduction terminated within 1.3 m of the seafloor. These are among the first pore water results generated from this vast climatically sensitive region, and they imply that abundant CH4, including gas hydrates, do not characterize the East Siberian Sea slope or rise along the investigated depth transects. This contradicts previous modeling and discussions, which due to the lack of data are almost entirely based on assumption.

  • 8.
    O'Regan, Matt
    et al.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Backman, Jan
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Fornaciari, Eliana
    Jakobsson, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    West, Gabriel
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Calcareous nannofossils anchor chronologies for Arctic Ocean sediments back to 500 ka2020In: Geology, ISSN 0091-7613, E-ISSN 1943-2682, Vol. 48, no 11, p. 1115-1119Article in journal (Refereed)
    Abstract [en]

    Poor age control in Pleistocene sediments of the central Arctic Ocean generates considerable uncertainty in paleoceanographic reconstructions. This problem is rooted in the perplexing magnetic polarity patterns recorded in Arctic marine sediments and the paucity of microfossils capable of providing calibrated biostratigraphic biohorizons or continuous oxygen isotope stratigraphies. Here, we document the occurrence of two key species of calcareous nannofossils in a single marine sediment core from the central Arctic Ocean that provide robust, globally calibrated age constraints for sediments younger than 500 ka. The key species are the coccolithophores Pseudoemiliania lacunosa, which went extinct during marine isotope stage (MIS) 12 (478-424 ka), and Emiliania huxleyi, which evolved during MIS 8 (300-243 ka). This is the first time that P lacunosa has been described in sediments of the central Arctic Ocean. The sedimentary horizons containing these age-diagnostic species can be traced, through lithostratigraphic correlation, across more than 450 km of the inner Arctic Ocean. They provide the first unequivocal support for proposed Pleistocene chronologies of sediment from this sector of the Arctic, and they constitute a foundation for developing and testing other geochronological tools for dating Arctic marine sediments.

  • 9.
    O'Regan, Matt
    et al.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Coxall, Helen K.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Cronin, Thomas M.
    Gyllencreutz, Richard
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Jakobsson, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Kaboth, Stefanie
    Lowemark, Ludvig
    Wiers, Steffen
    West, Gabriel
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Stratigraphic Occurrences of Sub-Polar Planktic Foraminifera in Pleistocene Sediments on the Lomonosov Ridge, Arctic Ocean2019In: Frontiers in Earth Science, E-ISSN 2296-6463, Vol. 7, article id 71Article in journal (Refereed)
    Abstract [en]

    Turborotalita quinqueloba is a species of planktic foraminifera commonly found in the sub-polar North Atlantic along the pathway of Atlantic waters in the Nordic seas and sometimes even in the Arctic Ocean, although its occurrence there remains poorly understood. Existing data show that T. quinqueloba is scarce in Holocene sediments from the central Arctic but abundance levels increase in sediments from the last interglacial period [Marine isotope stage (MIS) 5, 71-120 ka] in cores off the northern coast of Greenland and the southern Mendeleev Ridge. Turborotalita also occurs in earlier Pleistocene interglacials in these regions, with a unique and widespread occurrence of the less known Turborotalita egelida morphotype, proposed as a biostratigraphic marker for MIS 11 (474-374 ka). Here we present results from six new sediment cores, extending from the central to western Lomonosov Ridge, that show a consistent Pleistocene stratigraphy over 575 km. Preliminary semi-quantitative assessments of planktic foraminifer abundance and assemblage composition in two of these records (LOMROG12-7PC and AO16-5PC) reveal two distinct stratigraphic horizons containing Turborotalita in MIS 5. Earlier occurrences in Pleistocene interglacials are recognized, but contain significantly fewer specimens and do not appear to be stratigraphically coeval in the studied sequences. In all instances, the Turborotalita specimens resemble the typical T. quinqueloba morphotype but are smaller (63-125 mu m), smooth-walled and lack the final thickened calcite layer common to adults of the species. These results extend the geographical range for T. quinqueloba in MIS 5 sediments of the Arctic Ocean and provide compelling evidence for recurrent invasions during Pleistocene interglacials.

  • 10.
    O'Regan, Matt
    et al.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Cronin, Thomas M.
    Reilly, Brendan
    Olsen Alstrup, Aage Kristian
    Gemery, Laura
    Golub, Anna
    Mayer, Larry A.
    Morlighem, Mathieu
    Moros, Matthias
    Munk, Ole L.
    Nilsson, Johan
    Stockholms universitet, Meteorologiska institutionen (MISU).
    Pearce, Christof
    Detlef, Henrieka
    Stranne, Christian
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Vermassen, Flor
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    West, Gabriel
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Jakobsson, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    The Holocene dynamics of Ryder Glacier and ice tongue in north Greenland2021In: The Cryosphere, ISSN 1994-0416, E-ISSN 1994-0424, Vol. 15, no 8, p. 4073-4097Article in journal (Refereed)
    Abstract [en]

    The northern sector of the Greenland Ice Sheet is considered to be particularly susceptible to ice mass loss arising from increased glacier discharge in the coming decades. However, the past extent and dynamics of outlet glaciers in this region, and hence their vulnerability to climate change, are poorly documented. In the summer of 2019, the Swedish icebreaker Oden entered the previously unchartered waters of Sherard Osborn Fjord, where Ryder Glacier drains approximately 2 % of Greenland's ice sheet into the Lincoln Sea. Here we reconstruct the Holocene dynamics of Ryder Glacier and its ice tongue by combining radiocarbon dating with sedimentary facies analyses along a 45 km transect of marine sediment cores collected between the modern ice tongue margin and the mouth of the fjord. The results illustrate that Ryder Glacier retreated from a grounded position at the fjord mouth during the Early Holocene (> 10.7±0.4 ka cal BP) and receded more than 120 km to the end of Sherard Osborn Fjord by the Middle Holocene (6.3±0.3 ka cal BP), likely becoming completely land-based. A re-advance of Ryder Glacier occurred in the Late Holocene, becoming marine-based around 3.9±0.4 ka cal BP. An ice tongue, similar in extent to its current position was established in the Late Holocene (between 3.6±0.4 and 2.9±0.4 ka cal BP) and extended to its maximum historical position near the fjord mouth around 0.9±0.3 ka cal BP. Laminated, clast-poor sediments were deposited during the entire retreat and regrowth phases, suggesting the persistence of an ice tongue that only collapsed when the glacier retreated behind a prominent topographic high at the landward end of the fjord. Sherard Osborn Fjord narrows inland, is constrained by steep-sided cliffs, contains a number of bathymetric pinning points that also shield the modern ice tongue and grounding zone from warm Atlantic waters, and has a shallowing inland sub-ice topography. These features are conducive to glacier stability and can explain the persistence of Ryder's ice tongue while the glacier remained marine-based. However, the physiography of the fjord did not halt the dramatic retreat of Ryder Glacier under the relatively mild changes in climate forcing during the Holocene. Presently, Ryder Glacier is grounded more than 40 km seaward of its inferred position during the Middle Holocene, highlighting the potential for substantial retreat in response to ongoing climate change.

  • 11. Pérez, Lara F.
    et al.
    Jakobsson, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Funck, Thomas
    Andresen, Katrine J.
    Nielsen, Tove
    O'Regan, Matt
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Mørk, Finn
    Late Quaternary sedimentary processes in the central Arctic Ocean inferred from geophysical mapping2020In: Geomorphology, ISSN 0169-555X, E-ISSN 1872-695X, Vol. 369, article id 107309Article in journal (Refereed)
    Abstract [en]

    Cryospheric events in the Arctic Ocean have been largely studied through the imprints of ice sheets, ice shelves and icebergs in the seafloor morphology and sediment stratigraphy. Subglacial morphologies have been identified in the shallowest regions of the Arctic Ocean, up to 1200 m water depth, revealing the extent and dynamics of Arctic ice sheets during the last glacial periods. However, less attention has been given to sedimentary features imaged in the vicinity of the ice-grounded areas. Detailed interpretation of the sparse available swath bathymetry and sub-bottom profiles from the Lomonosov Ridge and the Amundsen Basin shows the occurrence of mass transport deposits (MTDs) and sediment waves in the central Arctic Ocean. The waxing and waning ice sheets and shelves in the Arctic Ocean have influenced the distribution of MTDs in the vicinity of grounding-ice areas, i.e. along the crest of Lomonosov Ridge. Due to the potential of Arctic sediments to hold gas hydrates, their destabilization should not be ruled out as trigger for sediment instability. Sediment waves formed by the interaction of internal waves that propagate along water mass interfaces with the bathymetric barrier of Lomonosov Ridge. This work describes the distribution and formation mechanisms of MTDs and sediment waves in the central Arctic Ocean in relation to grounding ice and internal waves between water masses, respectively. The distribution of these features provides new insight into past cryospheric and oceanographic conditions of the central Arctic Ocean.

  • 12.
    Stranne, Christian
    et al.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    O'Regan, Matthew
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Dickens, Gerald R.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Crill, Patrick
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Miller, C.
    Preto, Pedro
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Jakobsson, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Dynamic simulations of potential methane release from East Siberian continental slope sediments2016In: Geochemistry Geophysics Geosystems, E-ISSN 1525-2027, Vol. 17, no 3, p. 872-886Article in journal (Refereed)
    Abstract [en]

    Sediments deposited along continental margins of the Arctic Ocean presumably host large amounts of methane (CH4) in gas hydrates. Here we apply numerical simulations to assess the potential of gas hydrate dissociation and methane release from the East Siberian slope over the next 100 years. Simulations are based on a hypothesized bottom water warming of 3 degrees C, and an assumed starting distribution of gas hydrate. The simulation results show that gas hydrate dissociation in these sediments is relatively slow, and that CH4 fluxes toward the seafloor are limited by low sediment permeability. The latter is true even when sediment fractures are permitted to form in response to overpressure in pore space. With an initial gas hydrate distribution dictated by present-day pressure and temperature conditions, nominally 0.35 Gt of CH4 are released from the East Siberian slope during the first 100 years of the simulation. However, this CH4 discharge becomes significantly smaller (approximate to 0.05 Gt) if glacial sea level changes in the Arctic Ocean are considered. This is because a lower sea level during the last glacial maximum (LGM) must result in depleted gas hydrate abundance within the most sensitive region of the modern gas hydrate stability zone. Even if all released CH4 reached the atmosphere, the amount coming from East Siberian slopes would be trivial compared to present-day atmospheric CH4 inputs from other sources.

  • 13.
    Vermassen, Flor
    et al.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    O'Regan, Matt
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    West, Gabriel
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Cronin, Thomas M.
    Coxall, Helen K.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Testing the stratigraphic consistency of Pleistocene microfossil bioevents identified on the Alpha and Lomonosov Ridges, Arctic Ocean2021In: Arctic, Antarctic and Alpine research, ISSN 1523-0430, E-ISSN 1938-4246, Vol. 53, no 1, p. 309-323Article in journal (Refereed)
    Abstract [en]

    Two different biostratigraphic approaches are used to identify Marine Isotope Stage 11 (MIS 11) in Arctic Ocean sediments. On the Lomonosov Ridge, globally calibrated nannofossil bioevents constrain the age of sediments back to MIS 13 (Core LOMROG12-3PC). In the Amerasian Basin the unique occurrence of the planktonic foraminifer Turborotalita egelida is increasingly used as a marker for MIS 11. However, the T. egelida horizon has only been dated using cyclostratigraphy. Here we bridge these approaches through investigation of a new core (AO16-8GC) from the Alpha Ridge, Amerasian Basin. AO16-8GC is easily correlated to LOMROG12-3PC and contains the T. egelida horizon, allowing the first comparison between the biostratigraphy of both regions. Based on the nannofossil biochronology of LOMROG12-3PC, the most convincing lithologic correlation between the Alpha and Lomonosov Ridge cores places the T. egelida horizon between MIS 15 and MIS 17. This potentially older age for the T. egelida biohorizon emphasizes the need for continued caution in interpreting paleoceanographic records predating MIS 6, until further work can reconcile the nanno- and microfossil biostratigraphies that are emerging for middle Pleistocene sediments of the central Arctic Ocean.

  • 14.
    West, Gabriel
    et al.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Alexanderson, Helena
    Jakobsson, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    O'Regan, Matt
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Optically stimulated luminescence dating supports pre-Eemian age for glacial ice on the Lomonosov Ridge off the East Siberian continental shelf2021In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 267, article id 107082Article in journal (Refereed)
    Abstract [en]

    Establishing a solid chronological framework for Arctic marine sediments is a critical first step towards glacial and palaeoceanographic reconstructions. However, this has historically been more challenging than elsewhere in the world, and often results in core chronologies and subsequent paleoenvironmental reconstructions being questioned and overturned. Optically stimulated luminescence (OSL) dating provided important constraints on late Quaternary ages for central Arctic marine sediments, and has considerable potential to underpin chronologies in other parts of the Arctic Ocean. This study applies OSL and infrared stimulated luminescence (IRSL) geochronology to multi-grain quartz and feldspar samples from a sediment core collected from the Lomonosov Ridge off the Siberian shelf during the 2014 SWERUS-C3 Expedition. Testing and advancing the proposed chronology of late Quaternary sediments in this part of the Arctic is essential to better constrain the timing of ice sheet growth on the Siberian Arctic shelf and subsequent ice shelf development in the Arctic Ocean. The results of luminescence dating support a pre-Eemian age for extensive ice grounding and scouring of the southern Lomonosov Ridge. Furthermore, we combine the OSL ages with data from rock magnetic measurements and propose an age-depth model for cores in this region. As in other areas in the Arctic, magnetic grain size/mineralogy profiles resemble the global oxygen isotope curve and may have the potential to be a dating tool. This can be tested and further refined in future studies that obtain longer sedimentary archives. Our results also indicate that changes in the inclination of the natural remanent magnetisation do not reflect geomagnetic field variation in the investigated sediment cores.

  • 15.
    West, Gabriel
    et al.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Nilsson, Andreas
    Geels, Alexis
    Stockholms universitet, Institutionen för naturgeografi.
    Jakobsson, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Moros, Matthias
    Muschitiello, Francesco
    Pearce, Christof
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Snowball, Ian
    O'Regan, Matt
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Late Holocene Paleomagnetic Secular Variation in the Chukchi Sea, Arctic Ocean2022In: Geochemistry Geophysics Geosystems, E-ISSN 1525-2027, Vol. 23, no 5, article id e2021GC010187Article in journal (Refereed)
    Abstract [en]

    The geomagnetic field behavior in polar regions remains poorly understood and documented. Although a number of Late Holocene paleomagnetic secular variation (PSV) records exist from marginal settings of the Amerasian Basin in the Arctic Ocean, their age control often relies on a handful of radiocarbon dates to constrain ages over the past 4,200 years. Here we present well-dated Late Holocene PSV records from two sediment cores recovered from the Chukchi Sea, Arctic Ocean. The records are dated using 26 14C measurements, with local marine reservoir corrections calibrated using tephra layers from the 3.6 cal ka BP Aniakchak eruption in Northern Alaska. These 14C-based chronologies are extended into the post-bomb era using caesium-137 dating, and mercury isochrons. Paleomagnetic measurements and rock magnetic analyses reveal stable characteristic remanent magnetization directions, and a magnetic mineralogy dominated by low-coercivity minerals. The PSV records conform well to global spherical harmonic field model outputs. Centennial to millennial scale directional features are synchronous between the cores and other Western Arctic records from the area. Due to the robust chronology, these new high-resolution PSV records provide a valuable contribution to the characterization of geomagnetic field behavior in the Arctic over the past few thousand years, and can aid in developing age models for suitable sediments found in this region.

  • 16.
    Wiers, Steffen
    et al.
    Uppsala universitet, Naturresurser och hållbar utveckling.
    Snowball, Ian
    Uppsala universitet, Geofysik.
    O'Regan, Matt
    Department of Geological Sciences, Stockholm University, Stockholm, Sweden.
    Pearce, Christof
    Department of Geoscience and Arctic Research Centre, Aarhus University, Aarhus, Denmark.
    Almqvist, Bjarne
    Uppsala universitet, Geofysik.
    The Arctic Ocean Manganese Cycle, an Overlooked Mechanism in the Anomalous Palaeomagnetic Sedimentary Record2020In: Frontiers in Earth Science, E-ISSN 2296-6463, Vol. 8, article id 75Article in journal (Refereed)
    Abstract [en]

    Palaeomagnetic records obtained from Arctic Ocean sediments are controversial because they include numerous and anomalous geomagnetic excursions. Age models that do not rely on palaeomagnetic interpretations reveal that the majority of the changes in inclination do not concur with the established global magnetostratigraphy. Seafloor oxidation of (titano)magnetite to (titano)maghemite with self-reversal of the (titano)maghemite coatings has been proposed as an explanation. However, no existing model can explain when the self-reversed components formed and how they are linked to litho-stratigraphic changes in Arctic Ocean sediments. In this study, we present new palaeo- and rock magnetic measurements of a sediment core recovered from the Arlis Plateau, close to the East Siberian Shelf. The magnetic data set is evaluated in the context of the regional stratigraphy and downcore changes in physical and chemical properties. By cross-core correlation, we show that magnetic inclination changes in the region do not stratigraphically align, similar to results of studies of sediments from the Lomonosov Ridge and Yermak Plateau. Rock magnetic and chemical parameters indicate post-depositional diagenetic changes in the magnetic mineral assemblage that can be linked to manganese cycling in the Arctic Ocean. The potential presence of a magnetic remanence bearing manganese-iron oxide phase, which can undergo self-reversal, leads to an alternative hypothesis to primary seafloor oxidation of (titano)magnetite. This phase may form by precipitation from seawater or by changing redox conditions in the sediment column by mineral precipitation from ions dissolved in pore water. These findings highlight the need for further investigation into the magnetic mineral assemblage, its link to manganese cycling and pore water geochemistry in Arctic Ocean sediments.

1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf