Endre søk
Begrens søket
1 - 5 of 5
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Cornelissen, Johannes H. C.
    et al.
    Lang, Simone I.
    Soudzilovskaia, Nadejda A.
    During, Heinjo J.
    Comparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistry2007Inngår i: Annals of Botany, ISSN 0305-7364, E-ISSN 1095-8290, Vol. 99, nr 5, s. 987-1001Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background Recent decades have seen a major surge in the study of interspecific variation in functional traits in comparative plant ecology, as a tool to understanding and predicting ecosystem functions and their responses to environmental change. However, this research has been biased almost exclusively towards vascular plants. Very little is known about the role and applicability of functional traits of non-vascular cryptogams, particularly bryophytes and lichens, with respect to biogeochemical cycling. Yet these organisms are paramount determinants of biogeochemistry in several biomes, particularly cold biomes and tropical rainforests, where they: (1) contribute substantially to above-ground biomass (lichens, bryophytes); (2) host nitrogen-fixing bacteria, providing major soil N input (lichens, bryophytes); (3) control soil chemistry and nutrition through the accumulation of recalcitrant polyphenols (bryophytes) and through their control over soil and vegetation hydrology and temperatures; (4) both promote erosion (rock weathering by lichens) and prevent it (biological crusts in deserts); (5) provide a staple food to mammals such as reindeer (lichens) and arthropodes, with important feedbacks to soils and biota; and (6) both facilitate and compete with vascular plants. Approach Here we review current knowledge about interspecific variation in cryptogam traits with respect to biogeochemical cycling and discuss to what extent traits and measuring protocols needed for bryophytes and lichens correspond with those applied to vascular plants. We also propose and discuss several new or recently introduced traits that may help us understand and predict the control of cryptogams over several aspects of the biogeochemistry of ecosystems. Conclusions Whilst many methodological challenges lie ahead, comparative cryptogam ecology has the potential to meet some of the important challenges of understanding and predicting the biogeochemical and climate consequences of large-scale environmental changes driving shifts in the cryptogam components of vegetation composition.

  • 2. Eckstein, R. Lutz
    et al.
    Pereira, Eva
    Milbau, Ann
    Graae, Bente Jessen
    Predicted changes in vegetation structure affect the susceptibility to invasion of bryophyte-dominated subarctic heath2011Inngår i: Annals of Botany, ISSN 0305-7364, E-ISSN 1095-8290, Vol. 108, nr 1, s. 177-183Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A meta-analysis of global change experiments in arctic tundra sites suggests that plant productivity and the cover of shrubs, grasses and dead plant material (i.e. litter) will increase and the cover of bryophytes will decrease in response to higher air temperatures. However, little is known about which effects these changes in vegetation structure will have on seedling recruitment of species and invasibility of arctic ecosystems.A field experiment was done in a bryophyte-dominated, species-rich subarctic heath by manipulating the cover of bryophytes and litter in a factorial design. Three phases of seedling recruitment (seedling emergence, summer seedling survival, first-year recruitment) of the grass Anthoxanthum alpinum and the shrub Betula nana were analysed after they were sown into the experimental plots.Bryophyte and litter removal significantly increased seedling emergence of both species but the effects of manipulations of vegetation structure varied strongly for the later phases of recruitment. Summer survival and first-year recruitment were significantly higher in Anthoxanthum. Although bryophyte removal generally increased summer survival and recruitment, seedlings of Betula showed high mortality in early August on plots where bryophytes had been removed.Large species-specific variation and significant effects of experimental manipulations on seedling recruitment suggest that changes in vegetation structure as a consequence of global warming will affect the abundance of grasses and shrubs, the species composition and the susceptibility to invasion of subarctic heath vegetation.

  • 3. Liu, Xin
    et al.
    Rousk, Kathrin
    The moss traits that rule cyanobacterial colonization2021Inngår i: Annals of Botany, ISSN 0305-7364, E-ISSN 1095-8290Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cyanobacteria associated with mosses represent a main nitrogen (N) source in pristine, high-latitude and -altitude ecosystems due to their ability to fix N2. However, despite progress made regarding moss–cyanobacteria associations, the factors driving the large interspecific variation in N2 fixation activity between moss species remain elusive. The aim of the study was to identify the traits of mosses that determine cyanobacterial colonization and thus N2 fixation activity.Four moss species varying in N2 fixation activity were used to assess cyanobacterial abundance and activity to correlate it with moss traits (morphological, chemical, water-balance traits) for each species.Moss hydration rate was one of the pivotal traits, explaining 56 and 38 % of the variation in N2 fixation and cyanobacterial colonization, respectively, and was linked to morphological traits of the moss species. Higher abundance of cyanobacteria was found on shoots with smaller leaves, and with a high frequency of leaves. High phenol concentration inhibited N2 fixation but not colonization. These traits driving interspecific variation in cyanobacterial colonization, however, are also affected by the environment, and lead to intraspecific variation. Approximately 24 % of paraphyllia, filamentous appendages on Hylocomium splendens stems, were colonized by cyanobacteria.Our findings show that interspecific variations in moss traits drive differences in cyanobacterial colonization and thus, N2 fixation activity among moss species. The key traits identified here that control moss-associated N2 fixation and cyanobacterial colonization could lead to improved predictions of N2 fixation in different moss species as a function of their morphology.

  • 4. Milbau, Ann
    et al.
    Graae, Bente Jessen
    Shevtsova, Anna
    Nijs, Ivan
    Effects of a warmer climate on seed germination in the subarctic2009Inngår i: Annals of Botany, ISSN 0305-7364, E-ISSN 1095-8290, Vol. 104, nr 2, s. 287-296Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In a future warmer subarctic climate, the soil temperatures experienced by dispersed seeds are likely to increase during summer but may decrease during winter due to expected changes in snow depth, duration and quality. Because little is known about the dormancy-breaking and germination requirements of subarctic species, how warming may influence the timing and level of germination in these species was examined.Under controlled conditions, how colder winter and warmer summer soil temperatures influenced germination was tested in 23 subarctic species. The cold stratification and warm incubation temperatures were derived from real soil temperature measurements in subarctic tundra and the temperatures were gradually changed over time to simulate different months of the year.Moderate summer warming (+2·5 °C) substantially accelerated germination in all but four species but did not affect germination percentages. Optimum germination temperatures (20/10°C) further decreased germination time and increased germination percentages in three species. Colder winter soil temperatures delayed the germination in ten species and decreased the germination percentage in four species, whereas the opposite was found in Silene acaulis. In most species, the combined effect of a reduced snow cover and summer warming resulted in earlier germination and thus a longer first growing season, which improves the chance of seedling survival. In particular the recruitment of (dwarf) shrubs (Vaccinium myrtillus, V. vitis-idaea, Betula nana), trees (Alnus incana, Betula pubescens) and grasses (Calamagrostis lapponica, C. purpurea) is likely to benefit from a warmer subarctic climate.Seedling establishment is expected to improve in a future warmer subarctic climate, mainly by considerably earlier germination. The magnitudes of the responses are species-specific, which should be taken into account when modelling population growth and migration of subarctic species.

  • 5. Weijers, Stef
    et al.
    Greve Alsos, Inger
    Bronken Eidesen, Pernille
    Broekman, Rob
    Loonen, Maarten J.J.E.
    Rozema, Jelte
    No divergence in Cassiope tetragona: persistence of growth response along a latitudinal temperature gradient and under multi-year experimental warming2012Inngår i: Annals of Botany, ISSN 0305-7364, E-ISSN 1095-8290, Vol. 110, nr 3, s. 653-665Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background and Aims

    The dwarf shrub Cassiope tetragona (Arctic bell-heather) is increasingly used for arctic climate reconstructions, the reliability of which depends on the existence of a linear climate–growth relationship. This relationship was examined over a high-arctic to sub-arctic temperature gradient and under multi-year artificial warming at a high-arctic site.

    Methods

    Growth chronologies of annual shoot length, as well as total leaf length, number of leaves and average leaf length per year, were constructed for three sites. Cassiope tetragona was sampled near its cold tolerance limit at Ny-Ålesund, Svalbard, at its assumed climatic optimum in Endalen, Svalbard, and near its European southern limit at Abisko, Sweden. Together these sites represent the entire temperature gradient of this species. Leaf life span was also determined. Each growing season from 2004 to 2010, 17 open top chambers (OTCs) were placed near Ny-Ålesund, thus increasing the daily mean temperatures by 1·23°C. At the end of the 2010 growing season, shoots were harvested from OTCs and control plots, and growth parameters were measured.

    Key Results

    All growth parameters, except average leaf length, exhibited a linear positive response (R2 between 0·63 and 0·91) to mean July temperature over the temperature gradient. Average leaf life span was 1·4 years shorter in sub-arctic Sweden compared with arctic Svalbard. All growth parameters increased in response to the experimental warming; the leaf life span was, however, not significantly affected by OTC warming.

    Conclusions

    The linear July temperature–growth relationships, as well as the 7 year effect of experimental warming, confirm that the growth parameters annual shoot length, total leaf length and number of leaves per year can reliably be used for monitoring and reconstructing temperature changes. Furthermore, reconstructing July temperature from these parameters is not hampered by divergence.

1 - 5 of 5
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf