Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Hines, Keith M.
    et al.
    Bromwich, David H.
    Simulation of Late Summer Arctic Clouds during ASCOS with Polar WRF2017In: Monthly Weather Review, ISSN 0027-0644, E-ISSN 1520-0493, Vol. 145, no 2, p. 521-541Article in journal (Refereed)
    Abstract [en]

    Low-level clouds are extensive in the Arctic and contribute to inadequately understood feedbacks within the changing regional climate. The simulation of low-level clouds, including mixed-phase clouds, over the Arctic Ocean during summer and autumn remains a challenge for both real-time weather forecasts and climate models. Here, improved cloud representations are sought with high-resolution mesoscale simulations of the August-September 2008 Arctic Summer Cloud Ocean Study (ASCOS) with the latest polar-optimized version (3.7.1) of the Weather Research and Forecasting (Polar WRF) Model with the advanced two-moment Morrison microphysics scheme. Simulations across several synoptic regimes for 10 August-3 September 2008 are performed with three domains including an outer domain at 27-km grid spacing and nested domains at 9- and 3-km spacing. These are realistic horizontal grid spacings for common mesoscale applications. The control simulation produces excessive cloud liquid water in low clouds resulting in a large deficit in modeled incident shortwave radiation at the surface. Incident longwave radiation is less sensitive. A change in the sea ice albedo toward the larger observed values during ASCOS resulted in somewhat more realistic simulations. More importantly, sensitivity tests show that a reduction in specified liquid cloud droplet number to very pristine conditions increases liquid precipitation, greatly reduces the excess in simulated low-level cloud liquid water, and improves the simulated incident shortwave and longwave radiation at the surface.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf