We studied carbon balances and carbon stocks of mountain rangelands and meadows in a network of 8 eddy covariance sites and 14 sites with biomass data in Europe. Net ecosystem exchange of pastures and extensively managed semi-natural rangelands were usually close to zero, while meadows fixed carbon, with the exception of one meadow that was established on a drained peatland. When we accounted for off-site losses and inputs also the carbon budget of meadows approached zero. Soil carbon stocks in these ecosystems were high, comparable to those of forest ecosystems, while carbon stocks in plant biomass were smaller. Since soil carbon stocks of abandoned mountain grasslands are as high as in managed ecosystems, it is likely that the widespread abandonment of mountain rangelands used currently as pastures will not lead to an immediate carbon sink in those ecosystems.
Summer concentrations of C-2-C-6 non-methane hydrocarbons (NMHCs) were measured in Antarctica and in the Arctic in 2008. The results show that NMHC concentrations are on average five times higher in the Arctic than in Antarctica. In Antarctica, there were few concentration peaks, but during most of the remaining time concentrations were below or close to the detection limits. Over the Arctic pack ice area north of 80 degrees, concentrations of most of the measured NMHCs were always above the detection limits. No differences based on air-mass origin were detected in Antarctica, but samples collected over the central Arctic Ocean showed higher concentrations in air masses being advected from the Kara Sea and the western-central Arctic Ocean. The relatively higher NMHC-to-ethyne molar ratios calculated for samples collected over the central Arctic Ocean suggest additional alkane sources in the region.