Abstract Rhizobia nodulating native Astragalus and Oxytropis spp. in Northern Europe are not well-studied. In this study, we isolated bacteria from nodules of four Astragalus spp. and two Oxytropis spp. from the arctic and subarctic regions of Sweden and Russia. The phylogenetic analyses were performed by using sequences of three housekeeping genes (16S rRNA, rpoB and recA) and two accessory genes (nodC and nifH). The results of our multilocus sequence analysis (MLSA) of the three housekeeping genes tree showed that all the 13 isolates belonged to the genus Mesorhizobium and were positioned in six clades. Our concatenated housekeeping gene tree also suggested that the isolates nodulating Astragalus inopinatus, Astragalus frigidus, Astragalus alpinus ssp. alpinus and Oxytropis revoluta might be designated as four new Mesorhizobium species. The 13 isolates were grouped in three clades in the nodC and nifH trees. 15N analysis suggested that the legumes in association with these isolates were actively fixing nitrogen.
The phylum Caldiserica was identified from the hot spring 16S rRNA gene lineage ‘OP5’ and named for the sole isolate Caldisericum exile, a hot spring sulfur-reducing chemoheterotroph. Here we characterize 7 Caldiserica metagenome-assembled genomes (MAGs) from a thawing permafrost site in Stordalen Mire, Arctic Sweden. By 16S rRNA and marker gene phylogenies, and average nucleotide and amino acid identities, these Stordalen Mire Caldiserica (SMC) MAGs form part of a divergent clade from C. exile. Genome and meta-transcriptome and proteome analyses suggest that unlike Caldisericum, the SMCs (i) are carbohydrate- and possibly amino acid fermenters that can use labile plant compounds and peptides, and (ii) encode adaptations to low temperature. The SMC clade rose to community dominance within permafrost, with a peak metagenome-based relative abundance of ∼60%. It was also physiologically active in the upper seasonally-thawed soil. Beyond Stordalen Mire, analysis of 16S rRNA gene surveys indicated a global distribution of this clade, predominantly in anaerobic, carbon-rich and cold environments. These findings establish the SMCs as four novel phenotypically and ecologically distinct species within a single novel genus, distinct from C. exile clade at the phylum level. The SMCs are thus part of a novel cold-habitat phylum for an understudied, globally-distributed superphylum encompassing the Caldiserica. We propose the names Candidatus Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. Cryosericaceae fam. nov., Ca. Cryosericum gen. nov., Ca. Cryosericum septentrionale sp. nov., Ca. C. hinesii sp. nov., Ca. C. odellii sp. nov., and Ca. C. terrychapinii sp. nov.