Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. AminiTabrizi, Roya
    et al.
    Wilson, Rachel M.
    Fudyma, Jane D.
    Hodgkins, Suzanne B.
    Heyman, Heino M.
    Rich, Virginia I.
    Saleska, Scott R.
    Chanton, Jeffrey P.
    Tfaily, Malak M.
    Controls on Soil Organic Matter Degradation and Subsequent Greenhouse Gas Emissions Across a Permafrost Thaw Gradient in Northern Sweden2020In: Frontiers in Earth Science, E-ISSN 2296-6463, Vol. 8, article id 557961Article in journal (Refereed)
    Abstract [en]

    Warming-induced permafrost thaw could enhance microbial decomposition of previously stored soil organic matter (SOM) to carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>), one of the most significant potential feedbacks from terrestrial ecosystems to the atmosphere in a changing climate. The environmental parameters regulating microbe-organic matter interactions and greenhouse gas (GHG) emissions in northern permafrost peatlands are however still largely unknown. The objective of this work is to understand controls on SOM degradation and its impact on porewater GHG concentrations across the Stordalen Mire, a thawing peat plateau in Northern Sweden. Here, we applied high-resolution mass spectrometry to characterize SOM molecular composition in peat soil samples from the active layers of a Sphagnum-dominated bog and rich fen sites in the Mire. Microbe-organic matter interactions and porewater GHG concentrations across the thaw gradient were controlled by aboveground vegetation and soil pH. An increasingly high abundance of reduced organic compounds experiencing greater humification rates due to enhanced microbial activity were observed with increasing thaw, in parallel with higher CH<sub>4</sub> and CO<sub>2</sub> porewater concentrations. Bog SOM however contained more Sphagnum-derived phenolics, simple carbohydrates, and organic- acids. The low degradation of bog SOM by microbial communities, the enhanced SOM transformation by potentially abiotic mechanisms, and the accumulation of simple carbohydrates in the bog sites could be attributed in part to the low pH conditions of the system associated with Sphagnum mosses. We show that Gibbs free energy of C half reactions based on C oxidation state for OM can be used as a quantifiable measure for OM decomposability and quality to enhance current biogeochemical models to predict C decomposition rates. We found a direct association between OM chemical diversity and ÎŽ<sup>13</sup>C-CH<sub>4</sub> in peat porewater; where higher substrate diversity was positively correlated with enriched ÎŽ<sup>13</sup>C-CH<sub>4</sub> in fen sites. Oxidized sulfur-containing compounds, produced by Sphagnum, were further hypothesized to control GHG emissions by acting as electron acceptors for a sulfate-reducing electron transport chain, inhibiting methanogenesis in peat bogs. These results suggest that warming-induced permafrost thaw might increase organic matter lability, in subset of sites that become wetlands, and shift biogeochemical processes toward faster decomposition with an increasing proportion of carbon released as CH<sub>4</sub>.

  • 2. Anhaus, Philipp
    et al.
    Katlein, Christian
    Nicolaus, Marcel
    Arndt, Stefanie
    Jutila, Arttu
    Haas, Christian
    Snow Depth Retrieval on Arctic Sea Ice Using Under-Ice Hyperspectral Radiation Measurements2021In: Frontiers in Earth Science, E-ISSN 2296-6463, Vol. 9Article in journal (Refereed)
    Abstract [en]

    Radiation transmitted through sea ice and snow has an important impact on the energy partitioning at the atmosphere-ice-ocean interface. Snow depth and ice thickness are crucial in determining its temporal and spatial variations. Under-ice surveys using autonomous robotic vehicles to measure transmitted radiation often lack coincident snow depth and ice thickness measurements so that direct relationships cannot be investigated. Snow and ice imprint distinct features on the spectral shape of transmitted radiation. Here, we use those features to retrieve snow depth. Transmitted radiance was measured underneath landfast level first-year ice using a remotely operated vehicle in the Lincoln Sea in spring 2018. Colocated measurements of snow depth and ice thickness were acquired. Constant ice thickness, clear water conditions, and low in-ice biomass allowed us to separate the spectral features of snow. We successfully retrieved snow depth using two inverse methods based on under-ice optical spectra with 1) normalized difference indices and 2) an idealized two-layer radiative transfer model including spectral snow and sea ice extinction coefficients. The retrieved extinction coefficients were in agreement with previous studies. We then applied the methods to continuous time series of transmittance and snow depth from the landfast first-year ice and from drifting, melt-pond covered multiyear ice in the Central Arctic in autumn 2018. Both methods allow snow depth retrieval accuracies of approximately 5 cm. Our results show that atmospheric variations and absolute light levels have an influence on the snow depth retrieval.

  • 3.
    O'Regan, Matt
    et al.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Coxall, Helen K.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Cronin, Thomas M.
    Gyllencreutz, Richard
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Jakobsson, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Kaboth, Stefanie
    Lowemark, Ludvig
    Wiers, Steffen
    West, Gabriel
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Stratigraphic Occurrences of Sub-Polar Planktic Foraminifera in Pleistocene Sediments on the Lomonosov Ridge, Arctic Ocean2019In: Frontiers in Earth Science, E-ISSN 2296-6463, Vol. 7, article id 71Article in journal (Refereed)
    Abstract [en]

    Turborotalita quinqueloba is a species of planktic foraminifera commonly found in the sub-polar North Atlantic along the pathway of Atlantic waters in the Nordic seas and sometimes even in the Arctic Ocean, although its occurrence there remains poorly understood. Existing data show that T. quinqueloba is scarce in Holocene sediments from the central Arctic but abundance levels increase in sediments from the last interglacial period [Marine isotope stage (MIS) 5, 71-120 ka] in cores off the northern coast of Greenland and the southern Mendeleev Ridge. Turborotalita also occurs in earlier Pleistocene interglacials in these regions, with a unique and widespread occurrence of the less known Turborotalita egelida morphotype, proposed as a biostratigraphic marker for MIS 11 (474-374 ka). Here we present results from six new sediment cores, extending from the central to western Lomonosov Ridge, that show a consistent Pleistocene stratigraphy over 575 km. Preliminary semi-quantitative assessments of planktic foraminifer abundance and assemblage composition in two of these records (LOMROG12-7PC and AO16-5PC) reveal two distinct stratigraphic horizons containing Turborotalita in MIS 5. Earlier occurrences in Pleistocene interglacials are recognized, but contain significantly fewer specimens and do not appear to be stratigraphically coeval in the studied sequences. In all instances, the Turborotalita specimens resemble the typical T. quinqueloba morphotype but are smaller (63-125 mu m), smooth-walled and lack the final thickened calcite layer common to adults of the species. These results extend the geographical range for T. quinqueloba in MIS 5 sediments of the Arctic Ocean and provide compelling evidence for recurrent invasions during Pleistocene interglacials.

  • 4.
    Wiers, Steffen
    et al.
    Uppsala universitet, Naturresurser och hållbar utveckling.
    Snowball, Ian
    Uppsala universitet, Geofysik.
    O'Regan, Matt
    Department of Geological Sciences, Stockholm University, Stockholm, Sweden.
    Pearce, Christof
    Department of Geoscience and Arctic Research Centre, Aarhus University, Aarhus, Denmark.
    Almqvist, Bjarne
    Uppsala universitet, Geofysik.
    The Arctic Ocean Manganese Cycle, an Overlooked Mechanism in the Anomalous Palaeomagnetic Sedimentary Record2020In: Frontiers in Earth Science, E-ISSN 2296-6463, Vol. 8, article id 75Article in journal (Refereed)
    Abstract [en]

    Palaeomagnetic records obtained from Arctic Ocean sediments are controversial because they include numerous and anomalous geomagnetic excursions. Age models that do not rely on palaeomagnetic interpretations reveal that the majority of the changes in inclination do not concur with the established global magnetostratigraphy. Seafloor oxidation of (titano)magnetite to (titano)maghemite with self-reversal of the (titano)maghemite coatings has been proposed as an explanation. However, no existing model can explain when the self-reversed components formed and how they are linked to litho-stratigraphic changes in Arctic Ocean sediments. In this study, we present new palaeo- and rock magnetic measurements of a sediment core recovered from the Arlis Plateau, close to the East Siberian Shelf. The magnetic data set is evaluated in the context of the regional stratigraphy and downcore changes in physical and chemical properties. By cross-core correlation, we show that magnetic inclination changes in the region do not stratigraphically align, similar to results of studies of sediments from the Lomonosov Ridge and Yermak Plateau. Rock magnetic and chemical parameters indicate post-depositional diagenetic changes in the magnetic mineral assemblage that can be linked to manganese cycling in the Arctic Ocean. The potential presence of a magnetic remanence bearing manganese-iron oxide phase, which can undergo self-reversal, leads to an alternative hypothesis to primary seafloor oxidation of (titano)magnetite. This phase may form by precipitation from seawater or by changing redox conditions in the sediment column by mineral precipitation from ions dissolved in pore water. These findings highlight the need for further investigation into the magnetic mineral assemblage, its link to manganese cycling and pore water geochemistry in Arctic Ocean sediments.

  • 5. Wilson, Rachel M.
    et al.
    Neumann, Rebecca B.
    Crossen, Kelsey B.
    Raab, Nicole M.
    Hodgkins, Suzanne B.
    Saleska, Scott R.
    Bolduc, Ben
    Woodcroft, Ben J.
    Tyson, Gene W.
    Chanton, Jeffrey P.
    Rich, Virginia I.
    Microbial Community Analyses Inform Geochemical Reaction Network Models for Predicting Pathways of Greenhouse Gas Production2019In: Frontiers in Earth Science, E-ISSN 2296-6463, Vol. 7Article in journal (Refereed)
    Abstract [en]

    The mechanisms, pathways, and rates of CO2 and CH4 production are central to understanding carbon cycling and greenhouse gas flux in wetlands. Thawing permafrost regions are of particular interest because they are disproportionally affected by climate warming and store large reservoirs of organic C that may be readily converted to CO2 and CH4 upon thaw. This conversion is accomplished by a community of microorganisms interacting in complex ways to transform large organic compounds into fatty acids and ultimately CO2 and CH4. While the central role of microbes in this process is well-known, geochemical rate models rarely integrate microbiological information. Herein, we expanded the geochemical rate model of Neumann et al., (2016, Biogeochemistry 127: 57–87) to incorporate a Bayesian probability analysis and applied the result to quantifying rates of CO2, CH4, and acetate production in closed-system incubations of peat collected from three habitats along a permafrost thaw gradient. The goals of this analysis were twofold. First, we integrated microbial community analyses with geochemical rate modeling by using microbial data to inform the best model choice among equally mathematically feasible model variants. Second, based on model results, we described changes in organic carbon transformation among habitats to understand the changing pathways of greenhouse gas production along the permafrost thaw gradient. We found that acetoclasty, hydrogenotrophy, CO2 production, and homoacetogenesis were the important reactions in this system, with little evidence for anaerobic CH4 oxidation. There was a distinct transition in the reactions across the thaw gradient. The collapsed palsa stage presents an initial disequilibrium where the abrupt (physically and temporally) change in elevation introduces freshly fixed carbon into anoxic conditions then fermentation products build up over time as the system transitions through the acid phase and electron acceptors are depleted. In the bog, fermentation slows, while methanogenesis increases. In the fully thawed fen, most of the terminal electron acceptors are depleted and the system becomes increasingly methanogenic. This suggests that as permafrost regions thaw and dry palsas transition into wet fens, CH4 emissions will rise, increasing the warming potential of these systems and accelerating climate warming feedbacks.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf