Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Emerson, Joanne B.
    et al.
    Roux, Simon
    Brum, Jennifer R.
    Bolduc, Benjamin
    Woodcroft, Ben J.
    Jang, Ho Bin
    Singleton, Caitlin M.
    Solden, Lindsey M.
    Naas, Adrian E.
    Boyd, Joel A.
    Hodgkins, Suzanne B.
    Wilson, Rachel M.
    Trubl, Gareth
    Li, Changsheng
    Frolking, Steve
    Pope, Phillip B.
    Wrighton, Kelly C.
    Crill, Patrick M.
    Chanton, Jeffrey P.
    Saleska, Scott R.
    Tyson, Gene W.
    Rich, Virginia I.
    Sullivan, Matthew B.
    Host-linked soil viral ecology along a permafrost thaw gradient2018In: Nature Microbiology, E-ISSN 2058-5276, Vol. 3, no 8, p. 870-880Article in journal (Refereed)
    Abstract [en]

    Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood1–7. The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans8–10, remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden. We recovered 1,907 viral populations (genomes and large genome fragments) from 197 bulk soil and size-fractionated metagenomes, 58% of which were detected in metatranscriptomes and presumed to be active. In silico predictions linked 35% of the viruses to microbial host populations, highlighting likely viral predators of key carbon-cycling microorganisms, including methanogens and methanotrophs. Lineage-specific virus/host ratios varied, suggesting that viral infection dynamics may differentially impact microbial responses to a changing climate. Virus-encoded glycoside hydrolases, including an endomannanase with confirmed functional activity, indicated that viruses influence complex carbon degradation and that viral abundances were significant predictors of methane dynamics. These findings suggest that viruses may impact ecosystem function in climate-critical, terrestrial habitats and identify multiple potential viral contributions to soil carbon cycling.

  • 2. Ramirez, Kelly S.
    et al.
    Knight, Christopher G.
    de Hollander, Mattias
    Brearley, Francis Q.
    Constantinides, Bede
    Cotton, Anne
    Creer, Si
    Crowther, Thomas W.
    Davison, John
    Delgado-Baquerizo, Manuel
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Elliott, David R.
    Fox, Graeme
    Griffiths, Robert I.
    Hale, Chris
    Hartman, Kyle
    Houlden, Ashley
    Jones, David L.
    Krab, Eveline J.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Maestre, Fernando T.
    McGuire, Krista L.
    Monteux, Sylvain
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Orr, Caroline H.
    van der Putten, Wim H.
    Roberts, Ian S.
    Robinson, David A.
    Rocca, Jennifer D.
    Rowntree, Jennifer
    Schlaeppi, Klaus
    Shepherd, Matthew
    Singh, Brajesh K.
    Straathof, Angela L.
    Bhatnagar, Jennifer M.
    Thion, Cecile
    van der Heijden, Marcel G. A.
    de Vries, Franciska T.
    Detecting macroecological patterns in bacterial communities across independent studies of global soils2018In: Nature Microbiology, E-ISSN 2058-5276, Vol. 3, no 2, p. 189-196Article in journal (Refereed)
    Abstract [en]

    The emergence of high-throughput DNA sequencing methods provides unprecedented opportunities to further unravel bacterial biodiversity and its worldwide role from human health to ecosystem functioning. However, despite the abundance of sequencing studies, combining data from multiple individual studies to address macroecological questions of bacterial diversity remains methodically challenging and plagued with biases. Here, using a machine-learning approach that accounts for differences among studies and complex interactions among taxa, we merge 30 independent bacterial data sets comprising 1,998 soil samples from 21 countries. Whereas previous meta-analysis efforts have focused on bacterial diversity measures or abundances of major taxa, we show that disparate amplicon sequence data can be combined at the taxonomy-based level to assess bacterial community structure. We find that rarer taxa are more important for structuring soil communities than abundant taxa, and that these rarer taxa are better predictors of community structure than environmental factors, which are often confounded across studies. We conclude that combining data from independent studies can be used to explore bacterial community dynamics, identify potential 'indicator' taxa with an important role in structuring communities, and propose hypotheses on the factors that shape bacterial biogeography that have been overlooked in the past.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf