Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Swindles, Graeme T.
    et al.
    Roland, Thomas P.
    Amesbury, Matthew J.
    Lamentowicz, Mariusz
    McKeown, Michelle M.
    Sim, Thomas G.
    Fewster, Richard E.
    Mitchell, Edward A.D.
    Quantifying the effect of testate amoeba decomposition on peat-based water-table reconstructions2020In: European Journal of Protistology, ISSN 0932-4739, E-ISSN 1618-0429, Vol. 74, article id 125693Article in journal (Refereed)
    Abstract [en]

    Testate amoebae are a widely-used tool for palaeohydrological reconstruction from peatlands. However, it has been observed that weak idiosomic siliceous tests (WISTs) are common in uppermost peats, but very rarely found as subfossils deeper in the peat profile. This taphonomic problem has been noted widely and it has been established that WISTs disaggregate and/or dissolve in the low pH condition of ombrotrophic peatlands. Here we investigate the effect of this taphonomic problem on water-table reconstructions from thirty European peatlands through the comparison of reconstructions based on all taxa and those with WISTs removed. In almost all cases the decomposition of WISTs does not introduce discernible bias to peatland water-table reconstructions. However, some discrepancy is apparent when large abundances of Corythion-Trinema type are present (9−12 cm deviation with 50–60% abundance of this particular taxon). We recommend that WISTs should be removed before carrying out water-table reconstructions, and that the minimum count of testate amoebae per sample should exclude WISTs to ensure the development of robust reconstructions.

  • 2. Tsyganov, Andrey N.
    et al.
    Milbau, Ann
    Beyens, Louis
    Environmental factors influencing soil testate amoebae in herbaceous and shrubby vegetation along an altitudinal gradient in subarctic tundra (Abisko, Sweden)2013In: European Journal of Protistology, ISSN 0932-4739, E-ISSN 1618-0429, Vol. 49, no 2, p. 238-248Article in journal (Refereed)
    Abstract [en]

    Shifts in community composition of soil protozoa in response to climate change may substantially influence microbial activity and thereby decomposition processes. However, effects of climate and vegetation on soil protozoa remain poorly understood. We studied the distribution of soil testate amoebae in herbaceous and shrubby vegetation along an altitudinal gradient (from below the treeline at 500m to the mid-alpine region at 900m a.s.l.) in subarctic tundra. To explain patterns in abundance, species diversity and assemblage composition of testate amoebae, a data set of microclimate and soil chemical characteristics was collected. Both elevation and vegetation influenced the assemblage composition of testate amoebae. The variation was regulated by interactive effects of summer soil moisture, winter soil temperature, soil pH and nitrate ion concentrations. Besides, soil moisture regulated non-linear patterns in species richness across the gradient. This is the first study showing the effects of winter soil temperatures on species composition of soil protozoa. The effects could be explained by specific adaptations of testate amoebae such as frost-resistant cysts allowing them to survive low winter temperatures. We conclude that the microclimate and soil chemical characteristics are the main drivers of changes in protozoan assemblage composition in response to elevation and vegetation.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf