Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Polo, Jesús
    et al.
    Alonso-Abella, Miguel
    Ruiz-Arias, Jose A.
    Balenzategui, José L.
    Worldwide analysis of spectral factors for seven photovoltaic technologies2017In: Solar Energy, ISSN 0038-092X, E-ISSN 1471-1257, Vol. 142, p. 194-203Article in journal (Refereed)
    Abstract [en]

    Abstract This work presents a worldwide analysis of the PV spectral factor for seven different PV technologies including crystalline silicon and thin film modules. The annual spectral factor for the analyzed technologies is evaluated at 124 sites which cover widely the most important climatic zones. This dataset allows determining the spatial and geographical distribution of the spectral gains/losses with respect to reference conditions for the analyzed PV technologies. The spectral factors are computed from hourly global tilted spectral irradiances for a whole year using the SMARTS2 spectral solar radiation model with atmospheric inputs from the MACC reanalysis dataset. Overall, it is found that the annual spectral factor for crystalline silicon technologies is rather homogenous worldwide with maxima spectral losses and gains of ≈3% and ≈1%, respectively. The annual spectral factor for thin film devices, on the contrary, displays a latitudinal pattern with spectral losses mainly occurring in northern hemisphere locations and spectral gains occurring in tropical zones. Both spectral gains and losses may reach up to ≈10% in the case of amorphous silicon devices. The correlation analysis between average photon energy (APE) and spectral factor shows high correlation values for thin film devices. However, the data dispersion is large, which discourages the use of APE as a measure of the spectral performance of PV systems.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf