Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Bridgman, Matthew J.
    et al.
    Lomax, Barry H.
    Sjögersten, Sofie
    Impacts of Elevated Atmospheric CO2 and Plant Species Composition on Methane Emissions from Subarctic Wetlands2020In: Wetlands (Wilmington, N.C.), ISSN 0277-5212, E-ISSN 1943-6246, Vol. 40, no 3, p. 609-618Article in journal (Refereed)
    Abstract [en]

    Elevated atmospheric CO2 may create greater methane (CH4) emissions from subarctic wetlands. To date such ecosystem feedbacks remain poorly understood, particularly in relation to how different wetland plant species will control such feedbacks. In this study we exposed plant-peat mesocosms planted with four Cyperaceae species to 400 and 800 ppm atmospheric CO2 concentrations and measured plant and peat properties as well as CH4 fluxes. Above ground biomass for plants grown at 800 ppm CO2 increased for E. angustifolium, Eriophorum vaginatum and Carex brunnescens, but the total biomass of C. acuta decreased relative to the ambient CO2 treatment. The plant species and elevated CO2 treatment affected both peat redox potential and pore water chemistry. There was no overall effect of the elevated CO2 on CH4 emissions, however, CH4 emissions were related to above ground biomass and redox potential, both of which were significantly altered by elevated CO2. Our study shows that species composition poses an important control on how wetland communities will respond to elevated CO2 and that plant mediated changes of peat biogeochemical processes, in response to elevated CO2 levels, may affect CH4 emissions from sub-arctic wetlands, but any such responses will differ among species.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf