Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
Refine search result
1 - 37 of 37
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Abraham, Vojtech
    et al.
    Hicks, Sheila
    Svobodova-Svitavska, Helena
    Bozilova, Elissaveta
    Panajiotidis, Sampson
    Filipova-Marinova, Mariana
    Jensen, Christin Eldegard
    Tonkov, Spassimir
    Pidek, Irena Agnieszka
    Swieta-Musznicka, Joanna
    Zimny, Marcelina
    Kvavadze, Eliso
    Filbrandt-Czaja, Anna
    Hättestrand, Martina
    Stockholms universitet, Institutionen för naturgeografi.
    Karlioglu Kilic, Nurgül
    Kosenko, Jana
    Nosova, Maria
    Severova, Elena
    Volkova, Olga
    Hallsdottir, Margret
    Kalnina, Laimdota
    Noryskiewicz, Agnieszka M.
    Noryskiewicz, Bozena
    Pardoe, Heather
    Christodoulou, Areti
    Koff, Tiiu
    Fontana, Sonia L.
    Alenius, Teija
    Isaksson, Elisabeth
    Seppä, Heikki
    Veski, Siim
    Pedziszewska, Anna
    Weiser, Martin
    Giesecke, Thomas
    Patterns in recent and Holocene pollen accumulation rates across Europe - the Pollen Monitoring Programme Database as a tool for vegetation reconstruction2021In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 18, no 15, p. 4511-4534Article in journal (Refereed)
    Abstract [en]

    The collection of modern, spatially extensive pollen data is important for the interpretation of fossil pollen assemblages and the reconstruction of past vegetation communities in space and time. Modern datasets are readily available for percentage data but lacking for pollen accumulation rates (PARs). Filling this gap has been the motivation of the pollen monitoring network, whose contributors monitored pollen deposition in modified Tauber traps for several years or decades across Europe. Here we present this monitoring dataset consisting of 351 trap locations with a total of 2742 annual samples covering the period from 1981 to 2017. This dataset shows that total PAR is influenced by forest cover and climate parameters, which determine pollen productivity and correlate with latitude. Treeless vegetation produced PAR values of at least 140 grains cm−2 yr−1. Tree PAR increased by at least 400 grains cm−2 yr−1 with each 10 % increase in forest cover. Pollen traps situated beyond 200 km of the distribution of a given tree species still collect occasional pollen grains of that species. The threshold of this long-distance transport differs for individual species and is generally below 60 grains cm−2 yr−1. Comparisons between modern and fossil PAR from the same regions show similar values. For temperate taxa, modern analogues for fossil PARs are generally found downslope or southward of the fossil sites. While we do not find modern situations comparable to fossil PAR values of some taxa (e.g. Corylus), CO2 fertilization and land use may cause high modern PARs that are not documented in the fossil record. The modern data are now publicly available in the Neotoma Paleoecology Database and aid interpretations of fossil PAR data.

  • 2.
    Anderson, L. G.
    et al.
    Univ Gothenburg, Dept Chem, Gothenburg, Sweden..
    Björk, G.
    Univ Gothenburg, Dept Geosci, Gothenburg, Sweden..
    Jutterström, S.
    Univ Gothenburg, Dept Chem, Gothenburg, Sweden.;UNIFOB AS, Bjerknes Ctr Climate Res, Bergen, Norway..
    Pipko, I.
    Pacific Oceanol Inst FEB RAS, Vladivostok, Russia..
    Shakhova, N.
    Pacific Oceanol Inst FEB RAS, Vladivostok, Russia.;Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99701 USA..
    Semiletov, I.
    Pacific Oceanol Inst FEB RAS, Vladivostok, Russia.;Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99701 USA..
    Wåhlström, I.
    Univ Gothenburg, Dept Chem, Gothenburg, Sweden..
    East Siberian Sea, an Arctic region of very high biogeochemical activity2011In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 8, no 6, p. 1745-1754Article in journal (Refereed)
    Abstract [en]

    Shelf seas are among the most active biogeochemical marine environments and the East Siberian Sea is a prime example. This sea is supplied by seawater from both the Atlantic and Pacific Oceans and has a substantial input of river runoff. All of these waters contribute chemical constituents, dissolved and particulate, but of different signatures. Sea ice formation during the winter season and melting in the summer has a major impact on physical as well as biogeochemical conditions. The internal circulation and water mass distribution is significantly influenced by the atmospheric pressure field. The western region is dominated by input of river runoff from the Laptev Sea and an extensive input of terrestrial organic matter. The microbial decay of this organic matter produces carbon dioxide (CO2) that oversaturates all waters from the surface to bottom relative to atmospheric level, even when primary production, inferred from low surface water nutrients, has occurred. The eastern surface waters were under-saturated with respect to CO2 illustrating the dominance of marine primary production. The drawdown of dissolved inorganic carbon equals a primary production of similar to 0.8 +/- 2 mol C m(-2), which when multiplied by half the area of the East Siberian Sea, similar to 500 000 km(2), results in an annual primary production of 0.4 (+/- 1) x 10(12) mol C or similar to 4 (+/- 10) x 10(12) gC. Microbial decay occurs through much of the water column, but dominates at the sediment interface where the majority of organic matter ends up, thus more of the decay products are recycled to the bottom water. High nutrient concentrations and fugacity of CO2 and low oxygen and pH were observed in the bottom waters. Another signature of organic matter decomposition, methane (CH4), was observed in very high but variable concentrations. This is due to its seabed sources of glacial origin or modern production from ancient organic matter, becoming available due to sub-sea permafrost thaw and formation of so-called taliks. The decay of organic matter to CO2 as well as oxidation of CH4 to CO2 contribute to a natural ocean acidification making the saturation state of calcium carbonate low, resulting in under-saturation of all the bottom waters with respect to aragonite and large areas of under-saturation down to 50% with respect to calcite. Hence, conditions for calcifying organisms are very unfavorable.

  • 3. Anderson, Leif G.
    et al.
    Jorgen, E. K.
    Ericson, Ylva
    Humborg, Christoph
    Semiletov, Igor
    Sundbom, Marcus
    Ulfsbo, Adam
    Export of calcium carbonate corrosive waters from the East Siberian Sea2017In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 14, no 7, p. 1811-1823Article in journal (Refereed)
    Abstract [en]

    The Siberian shelf seas are areas of extensive biogeochemical transformation of organic matter, both of marine and terrestrial origin. This in combination with brine production from sea ice formation results in a cold bottom water of relative high salinity and partial pressure of carbon dioxide (pCO(2)). Data from the SWERUS-C3 expedition compiled on the icebreaker Oden in July to September 2014 show the distribution of such waters at the outer shelf, as well as their export into the deep central Arctic basins. Very high pCO(2) water, up to similar to 1000 mu atm, was observed associated with high nutrients and low oxygen concentrations. Consequently, this water had low saturation state with respect to calcium carbonate down to less than 0.8 for calcite and 0.5 for aragonite. Waters undersaturated in aragonite were also observed in the surface in waters at equilibrium with atmospheric CO2; however, at these conditions the cause of undersaturation was low salinity from river runoff and/or sea ice melt. The calcium carbonate corrosive water was observed all along the continental margin and well out into the deep Makarov and Canada basins at a depth from about 50 m depth in the west to about 150 m in the east. These waters of low aragonite saturation state are traced in historic data to the Canada Basin and in the waters flowing out of the Arctic Ocean north of Greenland and in the western Fram Strait, thus potentially impacting the marine life in the North Atlantic Ocean.

  • 4. Baumgartner, M.
    et al.
    Schilt, A.
    Eicher, O.
    Schmitt, J.
    Schwander, J.
    Spahni, R.
    Fischer, H.
    Stocker, T. F.
    High-resolution interpolar difference of atmospheric methane around the Last Glacial Maximum2012In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 9Article in journal (Refereed)
    Abstract [en]

    Reconstructions of past atmospheric methane concentrations are available from ice cores from both Greenland and Antarctica. The difference observed between the two polar methane concentration levels represents a valuable constraint on the geographical location of the methane sources. Here we present new high-resolution methane records from the North Greenland Ice Core Project (NGRIP) and the European Project for Ice Coring in Antarctica (EPICA) Dronning Maud Land (EDML) ice cores covering Termination 1, the Last Glacial Maximum, and parts of the last glacial back to 32 000 years before present. Due to the high resolution of the records, the synchronisation between the ice cores from NGRIP and EDML is considerably improved, and the interpolar concentration difference of methane is determined with unprecedented precision and temporal resolution. Relative to the mean methane concentration, we find a rather stable positive relative interpolar difference throughout the record with its minimum value of 3.7+/-0.7% between 21 900-21 200 years before present, which is higher than previously estimated in this interval close to the Last Glacial Maximum. This implies that Northern Hemisphere boreal wetland sources were never completely shut off during the peak glacial, as suggested from previous bipolar methane concentration records. Starting at 21 000 years before present, i.e. several millennia prior to the transition into the Holocene, the relative interpolar difference becomes even more positive and stays at a fairly stable level of 6.5+/-0.8% during Termination 1. We thus find that the boreal and tropical methane sources increased by approximately the same factor during Termination 1. We hypothesise that latitudinal shifts in the Intertropical Convergence Zone (ITCZ) and the monsoon system contribute, either by dislocation of the methane source regions or, in case of the ITCZ, also by changing the relative atmospheric volumes of the Northern and Southern Hemispheres, to the subtle variations in the relative interpolar concentration difference on glacial/interglacial as well as on millennial time scales.

  • 5. Bauwens, M.
    et al.
    Stavrakou, T.
    Müller, J. -F
    Van Schaeybroeck, B.
    De Cruz, L.
    De Troch, R.
    Giot, O.
    Hamdi, R.
    Termonia, P.
    Laffineur, Q.
    Amelynck, C.
    Schoon, N.
    Heinesch, B.
    Holst, T.
    Arneth, A.
    Ceulemans, R.
    Sanchez-Lorenzo, A.
    Guenther, A.
    Recent past (1979–2014) and future (2070–2099) isoprene fluxes over Europe simulated with the MEGAN–MOHYCAN model2018In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 15, no 12, p. 3673-3690Article in journal (Refereed)
    Abstract [en]

    Isoprene is a highly reactive volatile organic compound emitted by vegetation, known to be a precursor of secondary organic aerosols and to enhance tropospheric ozone formation under polluted conditions. Isoprene emissions respond strongly to changes in meteorological parameters such as temperature and solar radiation. In addition, the increasing CO2 concentration has a dual effect, as it causes both a direct emission inhibition as well as an increase in biomass through fertilization. In this study we used the MEGAN (Model of Emissions of Gases and Aerosols from Nature) emission model coupled with the MOHYCAN (Model of HYdrocarbon emissions by the CANopy) canopy model to calculate the isoprene fluxes emitted by vegetation in the recent past (1979–2014) and in the future (2070–2099) over Europe at a resolution of 0.1° × 0.1°. As a result of the changing climate, modeled isoprene fluxes increased by 1.1%yr−1 on average in Europe over 1979–2014, with the strongest trends found over eastern Europe and European Russia, whereas accounting for the CO2inhibition effect led to reduced emission trends (0.76%yr−1). Comparisons with field campaign measurements at seven European sites suggest that the MEGAN–MOHYCAN model provides a reliable representation of the temporal variability of the isoprene fluxes over timescales between 1h and several months. For the 1979–2014 period the model was driven by the ECMWF ERA-Interim reanalysis fields, whereas for the comparison of current with projected future emissions, we used meteorology simulated with the ALARO regional climate model. Depending on the representative concentration pathway (RCP) scenarios for greenhouse gas concentration trajectories driving the climate projections, isoprene emissions were found to increase by +7% (RCP2.6), +33% (RCP4.5), and +83% (RCP8.5), compared to the control simulation, and even stronger increases were found when considering the potential impact of CO2 fertilization: +15% (RCP2.6), +52% (RCP4.5), and +141% (RCP8.5). However, the inhibitory CO2 effect goes a long way towards canceling these increases. Based on two distinct parameterizations, representing strong or moderate inhibition, the projected emissions accounting for all effects were estimated to be 0–17% (strong inhibition) and 11–65% (moderate inhibition) higher than in the control simulation. The difference obtained using the two CO2parameterizations underscores the large uncertainty associated to this effect.

  • 6. Bischoff, Juliane
    et al.
    Sparkes, Robert B.
    Selver, Ayca Dogrul
    Spencer, Robert G. M.
    Gustafsson, Orjan
    Semiletov, Igor P.
    Dudarev, Oleg V.
    Wagner, Dirk
    Rivkina, Elizaveta
    van Dongen, Bart E.
    Talbot, Helen M.
    Source, transport and fate of soil organic matter inferred from microbial biomarker lipids on the East Siberian Arctic Shelf2016In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 13, no 17, p. 4899-4914Article in journal (Refereed)
    Abstract [en]

    The Siberian Arctic contains a globally significant pool of organic carbon (OC) vulnerable to enhanced warming and subsequent release by both fluvial and coastal erosion processes. However, the rate of release, its behaviour in the Arctic Ocean and vulnerability to remineralisation is poorly understood. Here we combine new measurements of microbial biohopanoids including adenosylhopane, a lipid associated with soil microbial communities, with published glycerol dialkyl glycerol tetraethers (GDGTs) and bulk delta C-13 measurements to improve knowledge of the fate of OC transported to the East Siberian Arctic Shelf (ESAS). The microbial hopanoid-based soil OC proxy R’(soil) ranges from 0.0 to 0.8 across the ESAS, with highest values nearshore and decreases offshore. Across the shelf R’(soil) displays a negative linear correlation with bulk delta C-13 measurements (r(2) = -0.73, p = < 0 : 001). When compared to the GDGT-based OC proxy, the branched and isoprenoid tetraether (BIT) index, a decoupled (non-linear) behaviour on the shelf was observed, particularly in the Buor-Khaya Bay, where the R’(soil) shows limited variation, whereas the BIT index shows a rapid decline moving away from the Lena River outflow channels. This reflects a balance between delivery and removal of OC from different sources. The good correlation between the hopanoid and bulk terrestrial signal suggests a broad range of hopanoid sources, both fluvial and via coastal erosion, whilst GDGTs appear to be primarily sourced via fluvial transport. Analysis of ice complex deposits (ICDs) revealed an average R’(soil) of 0.5 for the Lena Delta, equivalent to that of the Buor-Khaya Bay sediments, whilst ICDs from further east showed higher values (0.6-0.85). Although R’(soil) correlates more closely with bulk OC than the BIT, our understanding of the endmembers of this system is clearly still incomplete, with variations between the different East Siberian Arctic regions potentially reflecting differences in environmental conditions (e.g. temperature, pH), but other physiological controls on microbial bacteriohopanepolyol (BHP) production under psychrophilic conditions are as yet unknown.

  • 7. Broder, Lisa
    et al.
    Tesi, Tommaso
    Salvado, Joan A.
    Semiletov, Igor P.
    Dudarev, Oleg V.
    Gustafsson, Orjan
    Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior2016In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 13, no 17, p. 5003-5019Article in journal (Refereed)
    Abstract [en]

    Ongoing global warming in high latitudes may cause an increasing supply of permafrost-derived organic carbon through both river discharge and coastal erosion to the Arctic shelves. Mobilized permafrost carbon can be either buried in sediments, transported to the deep sea or degraded to CO2 and outgassed, potentially constituting a positive feedback to climate change. This study aims to assess the fate of terrigenous organic carbon (TerrOC) in the Arctic marine environment by exploring how it changes in concentration, composition and degradation status across the wide Laptev Sea shelf. We analyzed a suite of terrestrial biomarkers as well as source-diagnostic bulk carbon isotopes (delta C-13, Delta C-14) in surface sediments from a Laptev Sea transect spanning more than 800 km from the Lena River mouth (< 10m water depth) across the shelf to the slope and rise (2000-3000m water depth). These data provide a broad view on different TerrOC pools and their behavior during cross-shelf transport. The concentrations of lignin phenols, cutin acids and high-molecular-weight (HMW) wax lipids (tracers of vascular plants) decrease by 89-99% along the transect. Molecular-based degradation proxies for TerrOC (e.g., the carbon preference index of HMW lipids, the HMW acids / alkanes ratio and the acid / aldehyde ratio of lignin phenols) display a trend to more degraded TerrOC with increasing distance from the coast. We infer that the degree of degradation of permafrost-derived TerrOC is a function of the time spent under oxic conditions during protracted cross-shelf transport. Future work should therefore seek to constrain cross-shelf transport times in order to compute a TerrOC degradation rate and thereby help to quantify potential carbon-climate feedbacks.

  • 8.
    Brüchert, Volker
    et al.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Bröder, Lisa
    Stockholms universitet, Institutionen för miljövetenskap och analytisk kemi.
    Sawicka, Joanna E.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Tesi, Tommaso
    Stockholms universitet, Institutionen för miljövetenskap och analytisk kemi.
    Joye, Samantha P.
    Sun, Xiaole
    Stockholms universitet, Stockholms universitets Östersjöcentrum.
    Semiletov, Igor P.
    Samarkin, Vladimir A.
    Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment2018In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 15, no 2, p. 471-490Article in journal (Refereed)
    Abstract [en]

    The Siberian Arctic Sea shelf and slope is a key region for the degradation of terrestrial organic material transported from the organic carbon-rich permafrost regions of Siberia. We report on sediment carbon mineralization rates based on O2 microelectrode profiling, intact sediment core incubations, 35 S-sulfate tracer experiments, porewater dissolved inorganic carbon (DIC), δ13 CDIC, and iron, manganese, and ammonium concentrations from 20 shelf and slope stations. This data set provides a spatial overview of sediment carbon mineralization rates and pathways over large parts of the outer Laptev and East Siberian Arctic shelf and slope, and allowed us to assess degradation rates and efficiency of carbon burial in these sediments. Rates of oxygen uptake and iron and manganese reduction were comparable to temperate shelf and slope environments, but bacterial sulfate reduction rates were comparatively low. In the topmost 20 to 50 cm of sediment, aerobic carbon mineralization dominated degradation and comprised on average 82% of the depthintegrated carbon mineralization. Oxygen uptake rates and 35 S-sulfate reduction rates were higher in the eastern East Siberian Sea shelf compared to the Laptev Sea shelf. DIC/NH4 + ratios in porewaters and the stable carbon isotope composition of remineralized DIC indicated that the degraded organic matter on the Siberian shelf and slope was a mixture of marine and terrestrial organic matter. Based on dual end member calculations, the terrestrial organic carbon contribution varied between 32% and 36%, with a higher contribution in the Laptev Sea than in the East Siberian Sea. Extrapolation of the measured degradation rates using  isotope end member apportionment over the outer shelf of the Laptev and East Siberian Sea suggests that about 16 Tg C per year are respired in the outer shelf sea floor sediment. Of the organic matter buried below the oxygen penetration depth, between 0.6 and 1.3 Tg C per year are degraded by anaerobic processes, with a terrestrial organic carbon contribution ranging between 0.3 and 0.5 Tg per year.

  • 9.
    Bäckstrand, Kristina
    et al.
    Stockholms universitet, Institutionen för geologi och geokemi.
    Crill, Patrick, M.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Jackowicz-Korczyński, Marcin
    Mastepanov, Mikhail
    Christensen, Torben, R.
    Bastviken, David
    Annual carbon gas budget for a subarctic peatland, northern Sweden2010In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 7, no 1, p. 95-108Article in journal (Refereed)
    Abstract [en]

    Temperatures in the Arctic regions are rising, thawing permafrost and exposing previously stable soil organic carbon (OC) to decomposition. This can result in northern latitude soils, which have accumulated large amounts of OC potentially shifting from atmospheric C sinks to C sources with positive feedback on climate warming. In this paper, we estimate the annual net C gas balance (NCB) of the subarctic mire Stordalen, based on automatic chamber measurements of CO2 and total hydrocarbon (THC; CH4 and NMVOCs) exchange. We studied the dominant vegetation communities with different moisture and permafrost characteristics; a dry Palsa underlain by permafrost, an intermediate thaw site with Sphagnum spp. and a wet site with Eriophorum spp. where the soil thaws completely. Whole year accumulated fluxes of CO2 were estimated to 29.7, −35.3 and −34.9 gC m−2 respectively for the Palsa, Sphagnum and Eriophorum sites (positive flux indicates an addition of C to the atmospheric pool). The corresponding annual THC emissions were 0.5, 6.2 and 31.8 gC m−2 for the same sites. Therefore, the NCB for each of the sites was 30.2, −29.1 and −3.1 gC m−2 respectively for the Palsa, Sphagnum and Eriophorum site. On average, the whole mire was a CO2 sink of 2.6 gC m−2 and a THC source of 6.4 gC m−2 over a year. Consequently, the mire was a net source of C to the atmosphere by 3.9 gC m−2 (based on area weighted estimates for each of the three plant communities). Early and late snow season efflux of CO2 and THC emphasize the importance of winter measurements for complete annual C budgets. Decadal vegetation changes at Stordalen indicate that both the productivity and the THC emissions increased between 1970 and 2000. Considering the GWP100 of CH4, the net radiative forcing on climate increased 21% over the same time. In conclusion, reduced C compounds in these environments have high importance for both the annual C balance and climate.

  • 10. Chang, Kuang-Yu
    et al.
    Riley, William J.
    Crill, Patrick
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Grant, Robert F.
    Saleska, Scott R.
    Hysteretic temperature sensitivity of wetland CH4 fluxes explained by substrate availability and microbial activity2020In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 17, no 22, p. 5849-5860Article in journal (Refereed)
    Abstract [en]

    Methane (CH4) emissions from wetlands are likely increasing and important in global climate change assessments. However, contemporary terrestrial biogeochemical model predictions of CH4 emissions are very uncertain, at least in part due to prescribed temperature sensitivity of CH4 production and emission. While statistically consistent apparent CH4 emission temperature dependencies have been inferred from meta-analyses across microbial to ecosystem scales, year-round ecosystem-scale observations have contradicted that finding. Here, we show that apparent CH4 emission temperature dependencies inferred from year-round chamber measurements exhibit substantial intra-seasonal variability, suggesting that using static temperature relations to predict CH4 emissions is mechanistically flawed. Our model results indicate that such intra-seasonal variability is driven by substrate-mediated microbial and abiotic interactions: seasonal cycles in substrate availability favors CH4 production later in the season, leading to hysteretic temperature sensitivity of CH4 production and emission. Our findings demonstrate the uncertainty of inferring CH4 emission or production rates from temperature alone and highlight the need to represent microbial and abiotic interactions in wetland biogeochemical models.

  • 11. Charkin, A. N.
    et al.
    Dudarev, O. V.
    Semiletov, I. P.
    Kruhmalev, A. V.
    Vonk, J. E.
    Sanchez-Garcia, L.
    Karlsson, E.
    Gustafsson, O.
    Seasonal and interannual variability of sedimentation and organic matter distribution in the Buor-Khaya Gulf: the primary recipient of input from Lena River and coastal erosion in the southeast Laptev Sea2011In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 8, no 9, p. 2581-2594Article in journal (Refereed)
    Abstract [en]

    Climate warming is amplified in the land-sea system of the East Siberian Arctic, which also holds large pools of vulnerable carbon in permafrost. This coastal area is strongly influenced by sediment and carbon transport from both its large rivers and extensive erosion of Pleistocene permafrost along its coastline. This study is investigating the coastal fate of the sediment and organic carbon delivered to the Buor-Khaya Gulf, which is the first recipient of the overwhelming fluvial discharge from the Lena River and is additionally receiving large input from extensive erosion of the coastal ice-complex (permafrost a. k.a. Yedoma; loess soil with high organic carbon content). Both water column suspended particulate matter (SPM) and surface sediments were sampled at about 250 oceanographic stations in the Gulf in this multi-year effort, including one winter campaign, and analyzed for the distribution and sorting of sediment size, organic carbon content, and stable carbon isotope signals. The composition of the surface sediment suggests an overwhelmingly terrestrial contribution from both river and coastal erosion. The objective of this paper is to improve our understanding of the seasonal (i.e., winter vs summer) and interannual variability of these coastal sedimentation processes and the dynamics of organic carbon (OC) distribution in both the water column SPM and the surface sediments of the Buor-Khaya Gulf. Based on data collected during several years in the period 2000-2008, two different sedimentation regimes were revealed for the Buor-Khaya Gulf, the relative importance of each at a given time depend on hydrometeorological conditions, the Lena River water discharge and sea-ice regime: Type 1 erosion-accumulation and Type 2 accumulation. The Type 1 erosion-accumulation sedimentation regime is typical (2000-2006) for the ice-free period of the year (here considered in detail for August 2005). Under such conditions terrigenous sources of SPM and particulate organic carbon (POC) stem predominantly from river discharge, thermal erosion of coastal ice-complex and remobilized bottom sediments. The Type 2 accumulation sedimentation regime develops under ice-covered conditions, and only occasionally during the ice-free period (August 2008). In Type 2 winter, combined terrigenous and marine-biogenic SPM and POC sources are dominating due to relatively low overall terrigenous input (April 2007). In Type 2 summer, river alluvium becomes the major SPM and POC source (August 2008). The water column SPM and POC loadings vary by more than a factor of two between the two regimes. This study underscores the necessity of multi-year investigations to better understand the functioning of the primary recipient of terrestrially expulsed matter in the East Siberian Arctic.

  • 12. Chaudhary, Nitin
    et al.
    Miller, Paul A.
    Smith, Benjamin
    Modelling Holocene peatland dynamics with an individual-based dynamic vegetation model2017In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 14, no 10, p. 2571-2596Article in journal (Refereed)
    Abstract [en]

    Dynamic global vegetation models (DGVMs) are designed for the study of past, present and future vegetation patterns together with associated biogeochemical cycles and climate feedbacks. However, most DGVMs do not yet have detailed representations of permafrost and non-permafrost peatlands, which are an important store of carbon, particularly at high latitudes. We demonstrate a new implementation of peatland dynamics in a customized “Arctic” version of the LPJ-GUESS DGVM, simulating the long-term evolution of selected northern peatland ecosystems and assessing the effect of changing climate on peatland carbon balance. Our approach employs a dynamic multi-layer soil with representation of freeze-thaw processes and litter inputs from a dynamically varying mixture of the main peatland plant functional types: mosses, shrubs and graminoids. The model was calibrated and tested for a sub-Arctic mire in Stordalen, Sweden, and validated at a temperate bog site in Mer Bleue, Canada. A regional evaluation of simulated carbon fluxes, hydrology and vegetation dynamics encompassed additional locations spread across Scandinavia. Simulated peat accumulation was found to be generally consistent with published data and the model was able to capture reported long-term vegetation dynamics, water table position and carbon fluxes. A series of sensitivity experiments were carried out to investigate the vulnerability of high-latitude peatlands to climate change. We found that the Stordalen mire may be expected to sequester more carbon in the first half of the 21st century due to milder and wetter climate conditions, a longer growing season, and the CO2 fertilization effect, turning into a carbon source after mid-century because of higher decomposition rates in response to warming soils.

  • 13. Chierici, M.
    et al.
    Fransson, A.
    Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves2009In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 6, no 11, p. 2421-2431Article in journal (Refereed)
    Abstract [en]

    In the summer of 2005, we sampled surface water and measured pH and total alkalinity (A(T)) underway aboard IB Oden along the Northwest Passage from Cape Farewell (South Greenland) to the Chukchi Sea. We investigated the variability of carbonate system parameters, focusing particularly on carbonate concentration [CO32-] and calcium carbonate saturation states, as related to freshwater addition, biological processes and physical upwelling. Measurements on A(T), pH at 15 degrees C, salinity (S) and sea surface temperature (SST), were used to calculate total dissolved inorganic carbon (C-T), [CO32-] and the saturation of aragonite (Omega Ar) and calcite (Omega Ca) in the surface water. The same parameters were measured in the water column of the Bering Strait. Some surface waters in the Canadian Arctic Archipelago (CAA) and on the Mackenzie shelf (MS) were found to be undersaturated with respect to aragonite (Omega Ar<1). In these areas, surface water was low in AT and CT (<1500 mu mol kg(-1)) relative to seawater and showed low [CO32-]. The low saturation states were probably due to the likely the effect of dilution due to freshwater addition by sea ice melt (CAA) and river runoff (MS). High A(T) and C-T and low pH, corresponded with the lowest [CO32-], Omega Ar and Omega Ca, observed near Cape Bathurst and along the South Chukchi Peninsula. This was linked to the physical upwelling of subsurface water with elevated CO2. The highest surface Omega Ar and Omega Ca of 3.0 and 4.5, respectively, were found on the Chukchi Sea shelf and in the cold water north of Wrangel Island, which is heavily influenced by high CO2 drawdown and lower C-T from intense biological production. In the western Bering Strait, the cold and saline Anadyr Current carries water that is enriched in A(T) and C-T from enhanced organic matter remineralization, resulting in the lowest Omega Ar (similar to 1.2) of the area.

  • 14.
    Conrad, Sarah
    et al.
    Luleå University of Technology.
    Ingri, Johan
    Luleå University of Technology.
    Gelting, Johan
    Luleå University of Technology.
    Nordblad, Fredrik
    Luleå University of Technology.
    Engström, Emma
    Luleå University of Technology.
    Rodushkin, Ilia
    ALS Laboratory Group, Luleå.
    Andersson, Per
    Naturhistoriska riksmuseet, Forskningsavdelningen centralt.
    Porcelli, Don
    Oxford University, Oxford.
    Gustafsson, Örjan
    Stockholm University, Stockholm.
    Semiletov, Igor
    University of Alaska, USA.
    Öhlander, Björn
    Luleå University of Technology.
    Distributionof Fe isotopes in particles and colloids in the salinity gradient along theLena River plume, Laptev Sea2019In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 16, p. 1305-1319Article in journal (Refereed)
    Abstract [en]

    Riverine Fe input is the primary Fe source to the ocean. This study is focused on the distribution of Fe along the Lena River freshwater plume in the Laptev Sea using samples from a 600 km long transect in front of the Lena River mouth. Separation of the particulate (>0.22µm), colloidal (0.22µm – 1kDa), and truly dissolved (<1kDa) fractions of Fe was carried out. The total Fe concentrations ranged from 0.15 to 57 µM with Fe dominantly as particulate Fe. The loss of > 99% of particulate Fe and about 90% of the colloidal Fe was observed across the shelf, while the truly dissolved phase was almost constant across the Laptev Sea. Thus, the truly dissolved Fe could be an important source of bioavailable Fe for plankton in the central Arctic Ocean, together with the colloidal Fe. Fe-isotope analysis showed that the particulate phase and the sediment below the Lena River freshwater plume had negative δ56Fe values (relative to IRMM-14). The colloidal Fe phase showed negative δ56Fe values close to the river mouth (about -0.20‰) and positive δ56Fe values in the outermost stations (about +0.10‰).

    We suggest that the shelf zone acts as a sink for Fe particles and colloids with negative δ56Fe values, representing chemically reactive ferrihydrites. While the positive δ56Fe values of the colloidal phase within the outer Lena River freshwater plume, might represent Fe-oxyhydroxides, which remain in the water column, and will be the predominant δ56Fe composition in the Arctic Ocean.

  • 15. Deng, J.
    et al.
    Li, C.
    Frolking, S.
    Zhang, Y.
    Bäckstrand, Kristina
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Crill, Patrick
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Assessing effects of permafrost thaw on C fluxes based on multiyear modeling across a permafrost thaw gradient at Stordalen, Sweden2014In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 11, no 17, p. 4753-4770Article in journal (Refereed)
    Abstract [en]

    Northern peatlands in permafrost regions contain a large amount of organic carbon (C) in the soil. Climate warming and associated permafrost degradation are expected to have significant impacts on the C balance of these ecosystems, but the magnitude is uncertain. We incorporated a permafrost model, Northern Ecosystem Soil Temperature (NEST), into a biogeochemical model, DeNitrification-DeComposition (DNDC), to model C dynamics in high-latitude peatland ecosystems. The enhanced model was applied to assess effects of permafrost thaw on C fluxes of a subarctic peatland at Stordalen, Sweden. DNDC simulated soil freeze-thaw dynamics, net ecosystem exchange of CO2 (NEE), and CH4 fluxes across three typical land cover types, which represent a gradient in the process of ongoing permafrost thaw at Stordalen. Model results were compared with multiyear field measurements, and the validation indicates that DNDC was able to simulate observed differences in seasonal soil thaw, NEE, and CH4 fluxes across the three land cover types. Consistent with the results from field studies, the modeled C fluxes across the permafrost thaw gradient demonstrate that permafrost thaw and the associated changes in soil hydrology and vegetation not only increase net uptake of C from the atmosphere but also increase the annual to decadal radiative forcing impacts on climate due to increased CH4 emissions. This study indicates the potential of utilizing biogeochemical models, such as DNDC, to predict the soil thermal regime in permafrost areas and to investigate impacts of permafrost thaw on ecosystem C fluxes after incorporating a permafrost component into the model framework.

  • 16. Feng, X.
    et al.
    Gustafsson, O.
    Holmes, R. M.
    Vonk, J. E.
    van Dongen, B. E.
    Semiletov, I. P.
    Dudarev, O. V.
    Yunker, M. B.
    Macdonald, R. W.
    Montluon, D. B.
    Eglinton, T. I.
    Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic: comparison of hydrolyzable components with plant wax lipids and lignin phenols2015In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 12, no 15, p. 4841-4860Article in journal (Refereed)
    Abstract [en]

    Hydrolyzable organic carbon (OC) comprises a significant component of sedimentary particulate matter transferred from land into oceans via rivers. Its abundance and nature are however not well studied in Arctic river systems, and yet may represent an important pool of carbon whose fate remains unclear in the context of mobilization and related processes associated with a changing climate. Here, we examine the molecular composition and source of hydrolyzable compounds isolated from sedimentary particles derived from nine rivers across the pan-Arctic. Bound fatty acids (b-FAs), hydroxy FAs, n-alkane-alpha,omega-dioic acids (DAs) and phenols were the major components released upon hydrolysis of these sediments. Among them, b-FAs received considerable inputs from bacterial and/or algal sources, whereas omega-hydroxy FAs, mid-chain substituted acids, DAs, and hydrolyzable phenols were mainly derived from cutin and suberin of higher plants. We further compared the distribution and fate of suberin- and cutin-derived compounds with those of other terrestrial biomarkers (plant wax lipids and lignin phenols) from the same Arctic river sedimentary particles and conducted a benchmark assessment of several biomarker-based indicators of OC source and extent of degradation. While suberin-specific biomarkers were positively correlated with plant-derived high-molecular-weight (HMW) FAs, lignin phenols were correlated with cutin-derived compounds. These correlations suggest that, similar to leaf-derived cutin, lignin was mainly derived from litter and surface soil horizons, whereas suberin and HMW FAs incorporated significant inputs from belowground sources (roots and deeper soil). This conclusion is supported by the negative correlation between lignin phenols and the ratio of suberin-to-cutin biomarkers. Furthermore, the molecular composition of investigated biomarkers differed between Eurasian and North American Arctic rivers: while lignin dominated in the terrestrial OC of Eurasian river sediments, hydrolyzable OC represented a much larger fraction in the sedimentary particles from Colville River. Hence, studies exclusively focusing on either plant wax lipids or lignin phenols will not be able to fully unravel the mobilization and fate of bound OC in Arctic rivers. More comprehensive, multi-molecular investigations are needed to better constrain the land-ocean transfer of carbon in the changing Arctic, including further research on the degradation and transfer of both free and bound components in Arctic river sediments.

  • 17. Giesler, Reiner
    et al.
    Lyon, Steve W.
    Stockholms universitet, Institutionen för naturgeografi.
    Mörth, Carl-Magnus
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Karlsson, Jan
    Karlsson, E. M.
    Jantze, Elin J.
    Stockholms universitet, Institutionen för naturgeografi.
    Destouni, Georgia
    Stockholms universitet, Institutionen för naturgeografi.
    Humborg, Christoph
    Stockholms universitet, Institutionen för tillämpad miljövetenskap (ITM).
    Catchment-scale dissolved carbon concentrations and exportestimates across six subarctic streams in northern Sweden2014In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 11, p. 525-537Article in journal (Refereed)
    Abstract [en]

    Climatic change is currently enhancing permafrostthawing and the flow of water through the landscape in subarcticand arctic catchments, with major consequences forthe carbon export to aquatic ecosystems. We studied streamwater carbon export in several tundra-dominated catchmentsin northern Sweden. There were clear seasonal differencesin both dissolved organic carbon (DOC) and dissolved inorganiccarbon (DIC) concentrations. The highest DOC concentrationsoccurred during the spring freshet while the highestDIC concentrations were always observed during winterbaseflow conditions for the six catchments considered in thisstudy. Long-term trends for the period 1982 to 2010 for oneof the streams showed that DIC concentrations has increasedby 9% during the 28 yr of measurement while no clear trendwas found for DOC. Similar increasing trends were alsofound for conductivity, Ca and Mg. When trends were discretizedinto individual months, we found a significant linearincrease in DIC concentrations with time for September,November and December. In these subarctic catchments, theannual mass of C exported as DIC was in the same orderof magnitude as DOC; the average proportion of DIC to thetotal dissolved C exported was 61% for the six streams. Furthermore,there was a direct relationship between total runoffand annual dissolved carbon fluxes for these six catchments.These relationships were more prevalent for annual DIC exportsthan annual DOC exports in this region. Our results alsohighlight that both DOC and DIC can be important in highlatitudeecosystems. This is particularly relevant in environmentswhere thawing permafrost and changes to subsurfaceice due to global warming can influence stream water fluxesof C. The large proportion of stream water DIC flux also hasimplications on regional C budgets and needs to be consideredin order to understand climate-induced feedback mechanismsacross the landscape.

  • 18.
    Granath, Gustaf
    et al.
    Uppsala universitet, Växtekologi och evolution.
    Rydin, Håkan
    Uppsala universitet, Växtekologi och evolution.
    Baltzer, Jennifer L.
    Biology Department, Wilfrid Laurier University, Waterloo, Canada.
    Bengtsson, Fia
    Uppsala universitet, Växtekologi och evolution.
    Boncek, Nicholas
    Department of Biological Sciences, Union College, Schenectady, NY, USA.
    Bragazza, Luca
    Department of Life Science and Biotechnologies, University of Ferrara, Ferrara, Italy; Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Lausanne, Station 2, Lausanne, Switzerland; Ecole Polytechnique Fédérale de Lausanne EPFL, School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of ecological systems ECOS, Station 2, Lausanne, Switzerland.
    Bu, Zhao-Jun
    Institute for Peat and Mire Research, Northeast Normal University, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, China.
    Caporn, Simon J. M.
    School of Science and the Environment, Division of Biology and Conservation Ecology, Manchester Metropolitan University, Manchester, UK.
    Dorrepaal, Ellen
    Climate Impacts Research Centre, Dept. of Ecology and Environmental Science, Umeå University, Abisko, Sweden.
    Galanina, Olga
    Institute of Earth Sciences, St. Petersburg State University, St. Petersburg, Russia; Komarov Botanical Institute Russian Academy of Sciences, St. Petersburg, Russia.
    Galka, Mariusz
    Laboratory of Wetland Ecology and Monitoring & Department of Biogeography and Paleoecology, Adam Mickiewicz University in Poznan, Poznan, Polen.
    Ganeva, Anna
    Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria.
    Gillikin, David P.
    Department of Geology, Union College, Schenectady, NY, USA.
    Goia, Irina
    Babe ̧s-Bolyai University, Faculty of Biology and Geology, Department of Taxonomy and Ecology, Cluj Napoca, Romania.
    Goncharova, Nadezhda
    Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Science, Syktyvkar, Russia.
    Hajek, Michal
    Masaryk Univ, Fac Sci, Dept Bot & Zool, Brno, Czech Republic.
    Haraguchi, Akira
    Univ Kitakyushu, Dept Biol, Kitakyushu, Fukuoka, Japan.
    Harris, Lorna I.
    McGill Univ, Dept Geog, Montreal, Canada.
    Humphreys, Elyn
    Carleton Univ, Dept Geog & Environm Studies, Ottawa, Canada.
    Jirousek, Martin
    Masaryk Univ, Fac Sci, Dept Bot & Zool, Brno, Czech Republic; Mendel Univ Brno, Fac AgriSci, Dept Plant Biol, Brno, Czech Republic.
    Kajukalo, Katarzyna
    Adam Mickiewicz Univ, Lab Wetland Ecol & Monitoring, Poznan, Poland; Adam Mickiewicz Univ, Dept Biogeog & Paleoecol, Poznan, Poland.
    Karofeld, Edgar
    Univ Tartu, Inst Ecol & Earth Sci, Tartu, Estonia.
    Koronatova, Natalia G.
    Russian Acad Sci, Siberian Branch, Inst Soil Sci & Agrochem, Lab Biogeocenol, Novosibirsk, Russia.
    Kosykh, Natalia P.
    Russian Acad Sci, Siberian Branch, Inst Soil Sci & Agrochem, Lab Biogeocenol, Novosibirsk, Russia.
    Lamentowicz, Mariusz
    Adam Mickiewicz Univ, Lab Wetland Ecol & Monitoring, Poznan, Poland; Adam Mickiewicz Univ, Dept Biogeog & Paleoecol, Poznan, Poland.
    Lapshina, Elena
    Yugra State Univ, Khanty Mansiysk, Russia.
    Limpens, Juul
    Wageningen Univ, Plant Ecol & Nat Conservat Grp, Wageningen, Netherlands.
    Linkosalmi, Maiju
    Finnish Meteorol Inst, Helsinki, Finland.
    Ma, Jin-Ze
    Northeast Normal Univ, State Environm Protect Key Lab Wetland Ecol & Veg, Inst Peat & Mire Res, Changchun, Jilin, Peoples R China; Jilin Prov Key Lab Wetland Ecol Proc & Environm C, Changchun, Jilin, Peoples R China.
    Mauritz, Marguerite
    No Arizona Univ, Dept Biol Sci, Ctr Ecosyst Sci & Soc Ecoss, Flagstaff, USA.
    Munir, Tariq M.
    Univ Calgary, Dept Geog, Calgary, Canada; St Marys Univ, Dept Geol, Calgary, Canada.
    Natali, Susan M.
    Woods Hole Res Ctr, Falmouth, USA.
    Natcheva, Rayna
    Bulgarian Acad Sci, Inst Biodivers & Ecosyst Res, Sofia, Bulgaria.
    Noskova, Maria
    Russian Acad Sci, Komarov Bot Inst, St Petersburg, Russia.
    Payne, Richard J.
    Univ York, Environm, York, N Yorkshire, England; Penza State Univ, Penza, Russia.
    Pilkington, Kyle
    Union Coll, Dept Biol Sci, Schenectady, NY USA.
    Robinson, Sean
    SUNY Coll Oneonta, Dept Biol, Oneonta, NY USA.
    Robroek, Bjorn J. M.
    Univ Southampton, Biol Sci, Southampton, Hants, England.
    Rochefort, Line
    Laval Univ, Dept Plant Sci, Quebec City, PQ, Canada; Laval Univ, Ctr Northern Studies, Quebec City, PQ, Canada.
    Singer, David
    Univ Neuchatel, Inst Biol, Lab Soil Biodivers, Neuchatel, Switzerland; Univ Sao Paulo, Inst Biosci, Dept Zool, Sao Paulo, Brazil.
    Stenoien, Hans K.
    Norwegian Univ Sci & Technol, NTNU Univ Museum, Trondheim, Norway.
    Tuittila, Eeva-Stiina
    Univ Eastern Finland, Sch Forest Sci, Peatland & Soil Ecol Grp, Joensuu, Finland.
    Vellak, Kai
    Univ Tartu, Inst Ecol & Earth Sci, Tartu, Estonia.
    Verheyden, Anouk
    Union Coll, Dept Geol, Schenectady, NY USA.
    Waddington, James Michael
    McMaster Univ, Sch Geog & Earth Sci, Hamilton, Canada.
    Rice, Steven K.
    Union Coll, Dept Biol Sci, Schenectady, NY USA.
    Environmental and taxonomic controls of carbon and oxygen stable isotope composition in Sphagnum across broad climatic and geographic ranges2018In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 15, no 16, p. 5189-5202Article in journal (Refereed)
    Abstract [en]

    Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on nutrients, water and CO2 uptake from the atmosphere. As the isotopic composition of carbon (C-12(,)13) and oxygen (O-16(,)18) of these Sphagnum mosses are affected by environmental conditions, Sphagnum tissue accumulated in peat constitutes a potential long-term archive that can be used for climate reconstruction. However, there is inadequate understanding of how isotope values are influenced by environmental conditions, which restricts their current use as environmental and palaeoenvironmental indicators. Here we tested (i) to what extent C and O isotopic variation in living tissue of Sphagnum is speciesspecific and associated with local hydrological gradients, climatic gradients (evapotranspiration, temperature, precipitation) and elevation; (ii) whether the C isotopic signature can be a proxy for net primary productivity (NPP) of Sphagnum; and (iii) to what extent Sphagnum tissue delta O-18 tracks the delta O-18 isotope signature of precipitation. In total, we analysed 337 samples from 93 sites across North America and Eurasia us ing two important peat-forming Sphagnum species (S. magellanicum, S. fuscum) common to the Holarctic realm. There were differences in delta C-13 values between species. For S. magellanicum delta C-13 decreased with increasing height above the water table (HWT, R-2 = 17 %) and was positively correlated to productivity (R-2 = 7 %). Together these two variables explained 46 % of the between-site variation in delta C-13 values. For S. fuscum, productivity was the only significant predictor of delta C-13 but had low explanatory power (total R-2 = 6 %). For delta O-18 values, approximately 90 % of the variation was found between sites. Globally modelled annual delta O-18 values in precipitation explained 69 % of the between-site variation in tissue delta O-18. S. magellanicum showed lower delta O-18 enrichment than S. fuscum (-0.83 %0 lower). Elevation and climatic variables were weak predictors of tissue delta O-18 values after controlling for delta O-18 values of the precipitation. To summarize, our study provides evidence for (a) good predictability of tissue delta O-18 values from modelled annual delta O-18 values in precipitation, and (b) the possibility of relating tissue delta C-13 values to HWT and NPP, but this appears to be species-dependent. These results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.

    Download full text (pdf)
    FULLTEXT01
  • 19. Gustafson, A.
    et al.
    Miller, P. A.
    Björk, R. G.
    Olin, S.
    Smith, B.
    Nitrogen restricts future sub-arctic treeline advance in an individual-based dynamic vegetation model2021In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 18, no 23, p. 6329-6347Article in journal (Refereed)
    Abstract [en]

    Arctic environmental change induces shifts in high-latitude plant community composition and stature with implications for Arctic carbon cycling and energy exchange. Two major components of change in high-latitude ecosystems are the advancement of trees into tundra and the increased abundance and size of shrubs. How future changes in key climatic and environmental drivers will affect distributions of major ecosystem types is an active area of research. Dynamic vegetation models (DVMs) offer a way to investigate multiple and interacting drivers of vegetation distribution and ecosystem function. We employed the LPJ-GUESS tree-individual-based DVM over the Torneträsk area, a sub-arctic landscape in northern Sweden. Using a highly resolved climate dataset to downscale CMIP5 climate data from three global climate models and two 21st-century future scenarios (RCP2.6 and RCP8.5), we investigated future impacts of climate change on these ecosystems. We also performed model experiments where we factorially varied drivers (climate, nitrogen deposition and [CO2]) to disentangle the effects of each on ecosystem properties and functions. Our model predicted that treelines could advance by between 45 and 195 elevational metres by 2100, depending on the scenario. Temperature was a strong driver of vegetation change, with nitrogen availability identified as an important modulator of treeline advance. While increased CO2 fertilisation drove productivity increases, it did not result in range shifts of trees. Treeline advance was realistically simulated without any temperature dependence on growth, but biomass was overestimated. Our finding that nitrogen cycling could modulate treeline advance underlines the importance of representing plant–soil interactions in models to project future Arctic vegetation change.

  • 20. Gustafsson, O.
    et al.
    van Dongen, B. E.
    Vonk, J. E.
    Dudarev, O. V.
    Semiletov, I. P.
    Widespread release of old carbon across the Siberian Arctic echoed by its large rivers2011In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 8, no 6, p. 1737-1743Article in journal (Refereed)
    Abstract [en]

    Over decadal-centennial timescales, only a few mechanisms in the carbon-climate system could cause a massive net redistribution of carbon from land and ocean systems to the atmosphere in response to climate warming. The largest such climate-vulnerable carbon pool is the old organic carbon (OC) stored in Arctic permafrost (perennially frozen) soils. Climate warming, both predicted and now observed to be the strongest globally in the Eurasian Arctic and Alaska, causes thaw-release of old permafrost carbon from local tundra sites. However, a central challenge for the assessment of the general vulnerability of this old OC pool is to deduce any signal integrating its release over larger scales. Here we examine radiocarbon measurements of molecular soil markers exported by the five Great Russian-Arctic Rivers (Ob, Yenisey, Lena, Indigirka and Kolyma), employed as natural integrators of carbon release processes in their watersheds. The signals held in estuarine surface sediments revealed that average radiocarbon ages of n-alkanes increased east-to-west from 6400 yr BP in Kolyma to 11 400 yr BP in Ob. This is consistent with westwards trends of both warmer climate and more degraded organic matter as indicated by the ratio of high molecular weight (HMW) n-alkanoic acids to HMW n-alkanes. The dynamics of Siberian permafrost can thus be probed via the molecular-radiocarbon signal as carried by Arctic rivers. Old permafrost carbon is at present vulnerable to mobilization over continental scales. Climate-induced changes in the radiocarbon fingerprint of released permafrost carbon will likely depend on changes in both permafrost coverage and Arctic soil hydraulics.

  • 21.
    Jansen, Joachim
    et al.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Thornton, Brett F.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Cortés, Alicia
    Snöälv, Jo
    Wik, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    MacIntyre, Sally
    Crill, Patrick M.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Drivers of diffusive lake CH4 emissions on daily to multi-year time scales2020In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 17, no 7, p. 1911-1932Article in journal (Refereed)
    Abstract [en]

    Lakes and reservoirs are important emitters of climate forcing trace gases. Various environmental drivers of the flux, such as temperature and wind speed, have been identified, but their relative importance remains poorly understood. Here we use an extensive field dataset to disentangle physical and biogeochemical controls on the turbulence-driven diffusive flux of methane (CH4) on daily to multi-year timescales. We compare 8 years of floating chamber fluxes from three small, shallow subarctic lakes (2010–2017, n = 1306) with fluxes computed using 9 years of surface water concentration measurements (2009–2017, n = 606) and a small-eddy surface renewal model informed by in situ meteorological observations. Chamber fluxes averaged 6.9 ± 0.3 mg m−2 d−1 and gas transfer velocities (k600) from the chamber-calibrated surface renewal model averaged 4.0 ± 0.1 cm h−1. We find robust (R2 ≥ 0.93, p < 0.01) Arrhenius-type temperature functions of the CH4 flux (Ea' = 0.90 ± 0.14 eV) and of the surface CH4 concentration (Ea' = 0.88 ± 0.09 eV). Chamber derived gas transfer velocities tracked the power-law wind speed relation of the model (k ∝ u3/4). While the flux increased with wind speed, during storm events (U10 ≥ 6.5 m s−1) emissions were reduced by rapid water column degassing. Spectral analysis revealed that on timescales shorter than a month emissions were driven by wind shear, but on longer timescales variations in water temperature governed the flux, suggesting emissions were strongly coupled to production. Our findings suggest that accurate short- and long term projections of lake CH4 emissions can be based on distinct weather- and climate controlled drivers of the flux.

  • 22. Karlsson, E. S.
    et al.
    Charkin, A.
    Dudarev, O.
    Semiletov, I.
    Vonk, J. E.
    Sanchez-Garcia, L.
    Andersson, A.
    Gustafsson, Ö.
    Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea2011In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 8Article in journal (Refereed)
    Abstract [en]

    The world's largest continental shelf, the East Siberian Shelf Sea, receives substantial input of terrestrial organic carbon (terr-OC) from both large rivers and erosion of its coastline. Degradation of organic matter from thawing permafrost in the Arctic is likely to increase, potentially creating a positive feedback mechanism to climate warming. This study focuses on the Buor-Khaya Bay (SE Laptev Sea), an area with strong terr-OC input from both coastal erosion and the Lena river. To better understand the fate of this terr-OC, molecular (acyl lipid biomarkers) and isotopic tools (stable carbon and radiocarbon isotopes) have been applied to both particulate organic carbon (POC) in surface water and sedimentary organic carbon (SOC) collected from the underlying surface sediments. Clear gradients in both extent of degradation and differences in source contributions were observed both between surface water POC and surface sediment SOC as well as over the 100 s km investigation scale (about 20 stations). Depleted delta C-13-OC and high HMW/LMW n-alkane ratios signaled that terr-OC was dominating over marine/planktonic sources. Despite a shallow water column (10-40 m), the isotopic shift between SOC and POC varied systematically from +2 to +5 per mil for delta C-13 and from +300 to +450 for Delta C-14 from the Lena prodelta to the Buor-Khaya Cape. At the same time, the ratio of HMW n-alkanoic acids to HMW n-alkanes as well as HMW n-alkane CPI, both indicative of degradation, were 5-6 times greater in SOC than in POC. This suggests that terr-OC was substantially older yet less degraded in the surface sediment than in the surface waters. This unusual vertical degradation trend was only recently found also for the central East Siberian Sea. Numerical modeling (Monte Carlo simulations) with delta C-13 and Delta C-14 in both POC and SOC was applied to deduce the relative contribution of - plankton OC, surface soil layer OC and yedoma/mineral soil OC. This three end-member dual-carbon-isotopic mixing model suggests quite different scenarios for the POC vs SOC. Surface soil is dominating (63 +/- 10 %) the suspended organic matter in the surface water of SE Laptev Sea. In contrast, the yedoma/mineral soil OC is accounting for 60 +/- 9% of the SOC. We hypothesize that yedoma-OC, associated with mineral-rich matter from coastal erosion is ballasted and thus quickly settles to the bottom. The mineral association may also explain the greater resistance to degradation of this terr-OC component. In contrast, more amorphous humic-like and low-density terr-OC from surface soil and recent vegetation represents a younger but more bioavailable and thus degraded terr-OC component held buoyant in surface water. Hence, these two terr-OC components may represent different propensities to contribute to a positive feedback to climate warming by converting OC from coastal and inland permafrost into CO2.

  • 23.
    Kuhry, Peter
    et al.
    Stockholms universitet, Institutionen för naturgeografi.
    Bárta, Jiří
    Blok, Daan
    Elberling, Bo
    Faucherre, Samuel
    Hugelius, Gustaf
    Stockholms universitet, Institutionen för naturgeografi.
    Jørgensen, Christian J.
    Richter, Andreas
    Šantrůčková, Hana
    Weiss, Niels
    Stockholms universitet, Institutionen för naturgeografi.
    Lability classification of soil organic matter in the northern permafrost region2020In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 17, no 2, p. 361-379Article in journal (Refereed)
    Abstract [en]

    The large stocks of soil organic carbon (SOC) in soils and deposits of the northern permafrost region are sensitive to global warming and permafrost thawing. The potential release of this carbon (C) as greenhouse gases to the atmosphere does not only depend on the total quantity of soil organic matter (SOM) affected by warming and thawing, but it also depends on its lability (i.e., the rate at which it will decay). In this study we develop a simple and robust classification scheme of SOM lability for the main types of soils and deposits in the northern permafrost region. The classification is based on widely available soil geochemical parameters and landscape unit classes, which makes it useful for upscaling to the entire northern permafrost region. We have analyzed the relationship between C content and C-CO2 production rates of soil samples in two different types of laboratory incubation experiments. In one experiment, ca. 240 soil samples from four study areas were incubated using the same protocol (at 5 degrees C, aerobically) over a period of 1 year. Here we present C release rates measured on day 343 of incubation. These long-term results are compared to those obtained from short-term incubations of ca. 1000 samples (at 12 degrees C, aerobically) from an additional three study areas. In these experiments, C-CO2 production rates were measured over the first 4 d of incubation. We have focused our analyses on the relationship between C-CO2 production per gram dry weight per day (mu gC-CO2 gdw(-1) d(-1)) and C content (%C of dry weight) in the samples, but we show that relationships are consistent when using C = N ratios or different production units such as mu gC per gram soil C per day (mu gC-CO2 gC(-1) d(-1)) or per cm(3) of soil per day (mu gC-CO2 cm(-3) d(-1)). C content of the samples is positively correlated to C-CO2 production rates but explains less than 50% of the observed variability when the full datasets are considered. A partitioning of the data into landscape units greatly reduces variance and provides consistent results between incubation experiments. These results indicate that relative SOM lability decreases in the order of Late Holocene eolian deposits to alluvial deposits and mineral soils (including peaty wetlands) to Pleistocene yedoma deposits to C-enriched pockets in cryoturbated soils to peat deposits. Thus, three of the most important SOC storage classes in the northern permafrost region (yedoma, cryoturbated soils and peatlands) show low relative SOM lability. Previous research has suggested that SOM in these pools is relatively undecomposed, and the reasons for the observed low rates of decomposition in our experiments need urgent attention if we want to better constrain the magnitude of the thawing permafrost carbon feedback on global warming.

  • 24. Lakomiec, Patryk
    et al.
    Holst, Jutta
    Friborg, Thomas
    Crill, Patrick
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Rakos, Niklas
    Kljun, Natascha
    Olsson, Per-Ola
    Eklundh, Lars
    Persson, Andreas
    Rinne, Janne
    Field-scale CH4 emission at a subarctic mire with heterogeneous permafrost thaw status2021In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 18, no 20, p. 5811-5830Article in journal (Refereed)
    Abstract [en]

    The Arctic is exposed to even faster temperature changes than most other areas on Earth. Constantly increasing temperature will lead to thawing permafrost and changes in the methane (CH4) emissions from wetlands. One of the places exposed to those changes is the Abisko–Stordalen Mire in northern Sweden, where climate and vegetation studies have been conducted since the 1970s.

    In our study, we analyzed field-scale methane emissions measured by the eddy covariance method at Abisko–Stordalen Mire for 3 years (2014–2016). The site is a subarctic mire mosaic of palsas, thawing palsas, fully thawed fens, and open water bodies. A bimodal wind pattern prevalent at the site provides an ideal opportunity to measure mire patches with different permafrost status with one flux measurement system. The flux footprint for westerly winds was dominated by elevated palsa plateaus, while the footprint was almost equally distributed between palsas and thawing bog-like areas for easterly winds. As these patches are exposed to the same climatic and weather conditions, we analyzed the differences in the responses of their methane emission for environmental parameters.

    The methane fluxes followed a similar annual cycle over the 3 study years, with a gentle rise during spring and a decrease during autumn, without emission bursts at either end of the ice-free season. The peak emission during the ice-free season differed significantly for the two mire areas with different permafrost status: the palsa mire emitted 19 mg-C m−2 d−1 and the thawing wet sector 40 mg-C m−2 d−1. Factors controlling the methane emission were analyzed using generalized linear models. The main driver for methane fluxes was peat temperature for both wind sectors. Soil water content above the water table emerged as an explanatory variable for the 3 years for western sectors and the year 2016 in the eastern sector. The water table level showed a significant correlation with methane emission for the year 2016 as well. Gross primary production, however, did not show a significant correlation with methane emissions.

    Annual methane emissions were estimated based on four different gap-filing methods. The different methods generally resulted in very similar annual emissions. The mean annual emission based on all models was 3.1 ± 0.3 g-C m−2 a−1 for the western sector and 5.5 ± 0.5 g-C m−2 a−1 for the eastern sector. The average annual emissions, derived from these data and a footprint climatology, were 2.7 ± 0.5 and 8.2 ± 1.5 g-C m−2 a−1 for the palsa and thawing surfaces, respectively. Winter fluxes were relatively high, contributing 27 %–45 % to the annual emissions.

  • 25. Miller, Clint M.
    et al.
    Dickens, Gerald R.
    Jakobsson, Martin
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Johansson, Carina
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Koshurnikov, Andrey
    O'Regan, Matt
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Muschitiello, Francesco
    Stranne, Christian
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Mörth, Carl-Magnus
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Pore water geochemistry along continental slopes north of the East Siberian Sea: inference of low methane concentrations2017In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 14, no 12, p. 2929-2953Article in journal (Refereed)
    Abstract [en]

    Continental slopes north of the East Siberian Sea potentially hold large amounts of methane (CH4) in sediments as gas hydrate and free gas. Although release of this CH4 to the ocean and atmosphere has become a topic of discussion, the region remains sparingly explored. Here we present pore water chemistry results from 32 sediment cores taken during Leg 2 of the 2014 joint Swedish-Russian-US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions (SWERUS-C3) expedition. The cores come from depth transects across the slope and rise extending between the Mendeleev and the Lomonosov ridges, north of Wrangel Island and the New Siberian Islands, respectively. Upward CH4 flux towards the seafloor, as inferred from profiles of dissolved sulfate (SO42-), alkalinity, and the δ13C of dissolved inorganic carbon (DIC), is negligible at all stations east of 143 degrees E longitude. In the upper 8m of these cores, downward SO42- flux never exceeds 6.2 mol m-2 kyr-1, the upward alkalinity flux never exceeds 6.8 mol m-2 kyr-1, and δ13C composition of DIC (δ13C-DIC) only moderately decreases with depth (-3.6‰m-1 on average). Moreover, upon addition of Zn acetate to pore water samples, ZnS did not precipitate, indicating a lack of dissolved H2S. Phosphate, ammonium, and metal profiles reveal that metal oxide reduction by organic carbon dominates the geochemical environment and supports very low organic carbon turnover rates. A single core on the Lomonosov Ridge differs, as diffusive fluxes for SO42- and alkalinity were 13.9 and 11.3 mol m-2 kyr-1, respectively, the δ13C-DIC gradient was 5.6‰ m-1, and Mn2+ reduction terminated within 1.3 m of the seafloor. These are among the first pore water results generated from this vast climatically sensitive region, and they imply that abundant CH4, including gas hydrates, do not characterize the East Siberian Sea slope or rise along the investigated depth transects. This contradicts previous modeling and discussions, which due to the lack of data are almost entirely based on assumption.

  • 26. Olsson, Per-Ola
    et al.
    Heliasz, Michal
    Jin, Hongxiao
    Eklundh, Lars
    Mapping the reduction in gross primary productivity in subarctic birch forests due to insect outbreaks2017In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 14, p. 1703-1719Article in journal (Refereed)
    Abstract [en]

    It is projected that forest disturbances, such as insect outbreaks, will have an increasingly negative impact on forests with a warmer climate. These disturbance events can have a substantial impact on forests’ ability to absorb atmospheric CO2, and may even turn forests from carbon sinks into carbon sources; hence, it is important to develop methods both to monitor forest disturbances and to quantify the impact of these disturbance events on the carbon balance. In this study we present a method to monitor insect-induced defoliation in a subarctic birch forest in northern Sweden, and to quantify the impact of these outbreaks on gross primary productivity (GPP). Since frequent cloud cover in the study area requires data with high temporal resolution and limits the use of finer spatial resolution sensors such as Landsat, defoliation was mapped with remote sensing data from the MODIS sensor with 250 m x 250 m spatial resolution. The impact on GPP was estimated with a light use efficiency (LUE) model that was calibrated with GPP data obtained from eddy covariance (EC) measurements from 5 years with undisturbed birch forest and 1 year with insect-induced defoliation. Two methods were applied to estimate the impact on GPP: (1) applying a GPP reduction factor derived from EC measured GPP to estimate GPP loss, and (2) running a LUE model for both undisturbed and defoliated forest and deriving the differences in modelled GPP. In the study area of 100 km2 the results suggested a substantial setback to the carbon uptake: an average decrease in regional GPP over the three outbreak years (2004, 2012, and 2013) was estimated to 15±5 Gg C yr-1, compared to the mean regional GPP of 40 ±12 Gg C yr-1 for the 5 years without defoliation, i.e. 38%. In the most severe outbreak year (2012), 76% of the birch forests were defoliated, and annual regional GPP was merely 50 % of GPP for years without disturbances. The study has generated valuable data on GPP reduction, and demonstrates a potential for mapping insect disturbance impact over extended areas.

  • 27. Petrescu, A. M. R.
    et al.
    van Huissteden, J.
    Jackowicz-Korczynski, M.
    Yurova, A.
    Christensen, T. R.
    Crill, Patric M.
    Bäckstrand, Kristina
    Maximov, T. C.
    Modelling CH4 emissions from arctic wetlands: effects of hydrological parameterization2008In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 5, no 1, p. 111-121Article in journal (Refereed)
    Abstract [en]

    This study compares the CH4 fluxes from two arctic wetland sites of different annual temperatures during 2004 to 2006. The PEATLAND-VU model was used to simulate the emissions. The CH4 module of PEATLAND-VU is based on the Walter-Heimann model. The first site is located in northeast Siberia, Indigirka lowlands, Kytalyk reserve (70 degrees N, 147 degrees E) in a continuous permafrost region with mean annual temperatures of -14.3 degrees C. The other site is Stordalen mire in the eastern part of Lake Tornetrask (68 degrees N, 19 degrees E) ten kilometres east of Abisko, northern Sweden. It is located in a discontinuous permafrost region. Stordalen has a sub arctic climate with a mean annual temperature of -0.7 degrees C. Model input consisted of observed temperature, precipitation and snow cover data. In all cases, modelled CH4 emissions show a direct correlation between variations in water table and soil temperature variations. The differences in CH4 emissions between the two sites are caused by different climate, hydrology, soil physical properties, vegetation type and NPP. For Kytalyk the simulated CH4 fluxes show similar trends during the growing season, having average values for 2004 to 2006 between 1.29-2.09 mg CH4 m(-2) hr(-1). At Stordalen the simulated fluxes show a slightly lower average value for the same years (3.52 mg CH4 m(-2) hr(-1)) than the observed 4.7 mg CH4 m(-2) hr(-1). The effect of the longer growing season at Stordalen is simulated correctly. Our study shows that modelling of arctic CH4 fluxes is improved by adding a relatively simple hydrological model that simulates the water table position from generic weather data. Our results support the generalization in literature that CH4 fluxes in northern wetland are regulated more tightly by water table than temperature. Furthermore, parameter uncertainty at site level in wetland CH4 process models is an important factor in large scale modelling of CH4 fluxes.

  • 28.
    Pipko, I. I.
    et al.
    Pacific Oceanol Inst FEB RAS, Vladivostok, Russia..
    Semiletov, I. P.
    Pacific Oceanol Inst FEB RAS, Vladivostok, Russia.;Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99701 USA..
    Pugach, S. P.
    Pacific Oceanol Inst FEB RAS, Vladivostok, Russia..
    Wåhlstrom, I.
    Univ Gothenburg, Dept Chem, Gothenburg, Sweden..
    Anderson, L. G.
    Univ Gothenburg, Dept Chem, Gothenburg, Sweden..
    Interannual variability of air-sea CO2 fluxes and carbon system in the East Siberian Sea2011In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 8, no 7, p. 1987-2007Article in journal (Refereed)
    Abstract [en]

    Over the past couple of decades it has become apparent that air-land-sea interactions in the Arctic have a substantial impact on the composition of the overlying atmosphere (ACIA, 2004). The Arctic Ocean is small (only similar to 4% of the total World Ocean), but it is surrounded by offshore and onshore permafrost which is thawing at increasing rates under warming conditions, releasing carbon dioxide (CO2) into the water and atmosphere. The Arctic Ocean shelf where the most intensive biogeochemical processes have occurred occupies 1/3 of the ocean. The East Siberian Sea (ESS) shelf is the shallowest and widest shelf among the Arctic seas, and the least studied. The objective of this study was to highlight the importance of different factors that impact the carbon system (CS) as well as the CO2 flux dynamics in the ESS. CS variables were measured in the ESS in September 2003 and, 2004 and in late August-September 2008. It was shown that the western part of the ESS represents a river-and coastal-erosion-dominated heterotrophic ocean margin that is a source for atmospheric CO2. The eastern part of the ESS is a Pacific-water-dominated autotrophic area, which acts as a sink for atmospheric CO2. Our results indicate that the year-to-year dynamics of the partial pressure of CO2 in the surface water as well as the air-sea flux of CO2 varies substantially. In one year the ESS shelf was mainly heterotrophic and served as a moderate summertime source of CO2 (year 2004). In another year gross primary production exceeded community respiration in a relatively large part of the ESS and the ESS shelf was only a weak source of CO2 into the atmosphere (year 2008). It was shown that many factors impact the CS and CO2 flux dynamics (such as river runoff, coastal erosion, primary production/respiration, etc.), but they were mainly determined by the interplay and distribution of water masses that are basically influenced by the atmospheric circulation. In this contribution the air-sea CO2 fluxes were evaluated in the ESS based on measured CS characteristics, and summertime fluxes were estimated. It was shown that the total ESS shelf is a net source of CO2 for the atmosphere in a range of 0.4x10(12) to 2.3x10(12) g C.

  • 29. Pongracz, A.
    et al.
    Wårlind, D.
    Miller, P. A.
    Parmentier, F. -JW.
    Model simulations of arctic biogeochemistry and permafrost extent are highly sensitive to the implemented snow scheme in LPJ-GUESS2021In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 18, no 20, p. 5767-5787Article in journal (Refereed)
    Abstract [en]

    The Arctic is warming rapidly, especially in winter, which is causing large-scale reductions in snow cover. Snow is one of the main controls on soil thermodynamics, and changes in its thickness and extent affect both permafrost thaw and soil biogeochemistry. Since soil respiration during the cold season potentially offsets carbon uptake during the growing season, it is essential to achieve a realistic simulation of the effect of snow cover on soil conditions to more accurately project the direction of arctic carbon–climate feedbacks under continued winter warming.

    The Lund–Potsdam–Jena General Ecosystem Simulator (LPJ-GUESS) dynamic vegetation model has used – up until now – a single layer snow scheme, which underestimated the insulation effect of snow, leading to a cold bias in soil temperature. To address this shortcoming, we developed and integrated a dynamic, multi-layer snow scheme in LPJ-GUESS. The new snow scheme performs well in simulating the insulation of snow at hundreds of locations across Russia compared to observations. We show that improving this single physical factor enhanced simulations of permafrost extent compared to an advanced permafrost product, where the overestimation of permafrost cover decreased from 10 % to 5 % using the new snow scheme. Besides soil thermodynamics, the new snow scheme resulted in a doubled winter respiration and an overall higher vegetation carbon content.

    This study highlights the importance of a correct representation of snow in ecosystem models to project biogeochemical processes that govern climate feedbacks. The new dynamic snow scheme is an essential improvement in the simulation of cold season processes, which reduces the uncertainty of model projections. These developments contribute to a more realistic simulation of arctic carbon–climate feedbacks.

  • 30. Rijkers, R.
    et al.
    Dekker, M.
    Aerts, R.
    Weedon, J. T.
    Maximum summer temperatures predict the temperature adaptation of Arctic soil bacterial communities2023In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 20, no 4, p. 767-780Article in journal (Refereed)
    Abstract [en]

    Rapid warming of the Arctic terrestrial region has the potential to increase soil decomposition rates and form a carbon-driven feedback to future climate change. For an accurate prediction of the role of soil microbes in these processes, it will be important to understand the temperature responses of soil bacterial communities and implement them into biogeochemical models. The temperature adaptation of soil bacterial communities for a large part of the Arctic region is unknown. We evaluated the current temperature adaption of soil bacterial communities from 12 sampling sites in the sub- to High Arctic region. Temperature adaptation differed substantially between the soil bacterial communities of these sites, with estimates of optimal growth temperature (Topt) ranging between 23.4 ± 0.5 and 34.1 ± 3.7 ∘C. We evaluated possible statistical models for the prediction of the temperature adaption of soil bacterial communities based on different climate indices derived from soil temperature records or on bacterial community composition data. We found that highest daily average soil temperature was the best predictor for the Topt of the soil bacterial communities, increasing by 0.63 ∘C ∘C−1. We found no support for the prediction of temperature adaptation by regression tree analysis based on the relative abundance data of the most common bacterial species. Increasing summer temperatures will likely increase Topt of soil bacterial communities in the Arctic. Incorporating this mechanism into soil biogeochemical models and combining it with projections of soil temperature will help to reduce uncertainty in assessments of the vulnerability of soil carbon stocks in the Arctic.

  • 31. Salvado, Joan A.
    et al.
    Tesi, Tommaso
    Sundbom, Marcus
    Karlsson, Emma
    Krusa, Martin
    Semiletov, Igor P.
    Panova, Elena
    Gustafsson, Orjan
    Contrasting composition of terrigenous organic matter in the dissolved, particulate and sedimentary organic carbon pools on the outer East Siberian Arctic Shelf2016In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 13, no 22, p. 6121-6138Article in journal (Refereed)
    Abstract [en]

    Fluvial discharge and coastal erosion of the permafrost-dominated East Siberian Arctic delivers large quantities of terrigenous organic carbon (Terr-OC) to marine waters. The composition and fate of the remobilized Terr-OC needs to be better constrained as it impacts the potential for a climate-carbon feedback. In the present study, the bulk isotope (delta C-13 and Delta C-14) and macromolecular (lignin-derived phenols) composition of the cross-shelf exported organic carbon (OC) in different marine pools is evaluated. For this purpose, as part of the SWERUS-C3 expedition (July-September 2014), sediment organic carbon (SOC) as well as water column (from surface and near-bottom seawater) dissolved organic carbon (DOC) and particulate organic carbon (POC) samples were collected along the outer shelves of the Kara Sea, Laptev Sea and East Siberian Sea. The results show that the Lena River and the DOC may have a preferential role in the transport of Terr-OC to the outer shelf. DOC concentrations (740-3600 mu g L-1) were 1 order of magnitude higher than POC (20-360 mu g L-1), with higher concentrations towards the Lena River plume. The delta C-13 signatures in the three carbon pools varied from -23.9 +/- 1.9 parts per thousand in the SOC, 26.1 +/- 1.2 parts per thousand in the DOC and 27.1 +/- 1.9 parts per thousand in the POC. The Delta C-14 values ranged between 395 +/- 83 (SOC), 226 +/- 92 (DOC) and 113 +/- 122 parts per thousand(POC). These stable and radiocarbon isotopes were also different between the Laptev Sea and the East Siberian Sea. Both DOC and POC showed a depleted and younger trend off the Lena River plume. Further, the Pacific inflow and the sea-ice coverage, which works as a barrier preventing the input of “young” DOC and POC, seem to have a strong influence in these carbon pools, presenting older and more enriched delta C-13 signatures under the sea-ice extent. Lignin phenols exhibited higher OC-normalized concentrations in the SOC (0.10-2.34 mg g(-1) OC) and DOC (0.08-2.40 mg g(-1) OC) than in the POC (0.03-1.14 mg g(-1) OC). The good relationship between lignin and Delta C-14 signatures in the DOC suggests that a significant fraction of the outer-shelf DOC comes from “ young” Terr-OC. By contrast, the slightly negative correlation between lignin phenols and Delta C-14 signatures in POC, with higher lignin concentrations in older POC from near-bottom waters, may reflect the off-shelf transport of OC from remobilized permafrost in the nepheloid layer. Syringyl/vanillyl and cinnamyl/vannillyl phenol ratios presented distinct clustering between DOC, POC and SOC, implying that those pools may be carrying different Terr-OC of partially different origin. Moreover, 3,5-dihydroxybenzoic acid to vanillyl phenol ratios and p-coumaric acid to ferulic acid ratios, used as a diagenetic indicators, enhanced in POC and SOC, suggesting more degradation within these pools. Overall, the key contrast between enhanced lignin yields both in the youngest DOC and the oldest POC samples reflects a significant decoupling of terrestrial OC sources and pathways.

  • 32. Semiletov, I. P.
    et al.
    Pipko, I. I.
    Shakhova, N. E.
    Dudarev, O. V.
    Pugach, S. P.
    Charkin, A. N.
    McRoy, C. P.
    Kosmach, D.
    Gustafsson, O.
    Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion2011In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 8, no 9, p. 2407-2426Article in journal (Refereed)
    Abstract [en]

    The Lena River integrates biogeochemical signals from its vast drainage basin, and the integrated signal reaches far out over the Arctic Ocean. Transformation of riverine organic carbon (OC) into mineral carbon, and mineral carbon into the organic form in the Lena River watershed, can be considered to be quasi-steady-state processes. An increase in Lena discharge exerts opposite effects on total organic (TOC) and total inorganic (TCO2) carbon: TOC concentration increases, while TCO2 concentration decreases. Significant inter-annual variability in mean values of TCO2, TOC, and their sum (total carbon, TC) has been found. This variability is determined by changes in land hydrology which cause differences in the Lena River discharge. There is a negative correlation in the Lena River between TC in September and its mean discharge in August; a time shift of about one month is required for water to travel from Yakutsk to the Laptev Sea. Total carbon entering the sea with the Lena discharge is estimated to be almost 10 Tg C yr(-1). The annual Lena River discharge of particulate organic carbon (POC) can be as high as 0.38 Tg (moderate to high estimate). If we instead accept Lisytsin’s (1994) statement that 85-95% of total particulate matter (PM) (and POC) precipitates on the marginal “filter”, then only about 0.03-0.04 Tg of Lena River POC reaches the Laptev Sea. The Lena’s POC export would then be two orders of magnitude less than the annual input of eroded terrestrial carbon onto the shelf of the Laptev and East Siberian seas, which is estimated to be about 4 Tg. Observations support the hypothesis of a dominant role for coastal erosion (Semiletov, 1999a, b) in East Siberian Arctic Shelf (ESAS) sedimentation and the dynamics of the carbon/carbonate system. The Lena River is characterized by relatively high concentrations of the primary greenhouse gases, dissolved carbon dioxide (CO2) and methane (CH4). During all seasons the river is supersaturated in CO2 compared to the atmosphere, by up to 1.5-2 fold in summer, and 4-5 fold in winter. This results in a significant CO2 supersaturation in the adjacent coastal sea. Localized areas of dissolved CH4 along the Lena River and in the Lena delta channels may reach 100 nM, but the CH4 concentration decreases to 5-20nM towards the sea, which suggests that riverborne export of CH4 plays but a minor role in determining the ESAS CH4 budget in coastal waters. Instead, the seabed appears to be the source that provides most of the CH4 to the Arctic Ocean.

  • 33.
    Siewert, Matthias B.
    Stockholms universitet, Institutionen för naturgeografi.
    High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment2018In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 15, no 6, p. 1663-1682Article in journal (Refereed)
    Abstract [en]

    Soil organic carbon (SOC) stored in northern peatlands and permafrost-affected soils are key components in the global carbon cycle. This article quantifies SOC stocks in a sub-Arctic mountainous peatland environment in the discontinuous permafrost zone in Abisko, northern Sweden. Four machine-learning techniques are evaluated for SOC quantification: multiple linear regression, artificial neural networks, support vector machine and random forest. The random forest model performed best and was used to predict SOC for several depth increments at a spatial resolution of 1 m (1 x 1 m). A high-resolution (1 m) land cover classification generated for this study is the most relevant predictive variable. The landscape mean SOC storage (0-150 cm) is estimated to be 8.3 +/- 8.0 kg C m(-2) and the SOC stored in the top meter (0-100 cm) to be 7.7 +/- 6.2 kg C m(-2). The predictive modeling highlights the relative importance of wetland areas and in particular peat plateaus for the landscape's SOC storage. The total SOC was also predicted at reduced spatial resolutions of 2, 10, 30, 100, 250 and 1000 m and shows a significant drop in land cover class detail and a tendency to underestimate the SOC at resolutions > 30 m. This is associated with the occurrence of many small-scale wetlands forming local hot-spots of SOC storage that are omitted at coarse resolutions. Sharp transitions in SOC storage associated with land cover and permafrost distribution are the most challenging methodological aspect. However, in this study, at local, regional and circum-Arctic scales, the main factor limiting robust SOC mapping efforts is the scarcity of soil pedon data from across the entire environmental space. For the Abisko region, past SOC and permafrost dynamics indicate that most of the SOC is barely 2000 years old and very dynamic. Future research needs to investigate the geomorphic response of permafrost degradation and the fate of SOC across all landscape compartments in post-permafrost landscapes.

  • 34. Sjögersten, S.
    et al.
    Ledger, M.
    Siewert, M.
    de la Barreda-Bautista, B.
    Sowter, A.
    Gee, D.
    Foody, G.
    Boyd, D. S.
    Optical and radar Earth observation data for upscaling methane emissions linked to permafrost degradation in sub-Arctic peatlands in northern Sweden2023In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Biogeosciences, Vol. 20, no 20, p. 4221-4239Article in journal (Refereed)
    Abstract [en]

    Permafrost thaw in Arctic regions is increasing methane (CH4) emissions into the atmosphere, but quantification of such emissions is difficult given the large and remote areas impacted. Hence, Earth observation (EO) data are critical for assessing permafrost thaw, associated ecosystem change and increased CH4 emissions. Often extrapolation from field measurements using EO is the approach employed. However, there are key challenges to consider. Landscape CH4 emissions result from a complex local-scale mixture of micro-topographies and vegetation types that support widely differing CH4 emissions, and it is difficult to detect the initial stages of permafrost degradation before vegetation transitions have occurred. This study considers the use of a combination of ultra-high-resolution unoccupied aerial vehicle (UAV) data and Sentinel-1 and Sentinel-2 data to extrapolate field measurements of CH4 emissions from a set of vegetation types which capture the local variation in vegetation on degrading palsa wetlands. We show that the ultra-high-resolution UAV data can map spatial variation in vegetation relevant to variation in CH4 emissions and extrapolate these across the wider landscape. We further show how this can be integrated with Sentinel-1 and Sentinel-2 data. By way of a soft classification and simple correction of misclassification bias of a hard classification, the output vegetation mapping and subsequent extrapolation of CH4 emissions closely matched the results generated using the UAV data. Interferometric synthetic-aperture radar (InSAR) assessment of subsidence together with the vegetation classification suggested that high subsidence rates of palsa wetland can be used to quantify areas at risk of increased CH4 emissions. The transition of a 50 ha area currently experiencing subsidence to fen vegetation is estimated to increase emissions from 116 kg CH4 per season to emissions as high as 6500 to 13 000 kg CH4 per season. The key outcome from this study is that a combination of high- and low-resolution EO data of different types provides the ability to estimate CH4 emissions from large geographies covered by a fine mixture of vegetation types which are vulnerable to transitioning to CH4 emitters in the near future. This points to an opportunity to measure and monitor CH4 emissions from the Arctic over space and time with confidence.

  • 35. Sparkes, R. B.
    et al.
    Selver, A. D.
    Bischoff, J.
    Talbot, H. M.
    Gustafsson, O.
    Semiletov, I. P.
    Dudarev, O. V.
    van Dongen, B. E.
    GDGT distributions on the East Siberian Arctic Shelf: implications for organic carbon export, burial and degradation2015In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 12, no 12, p. 3753-3768Article in journal (Refereed)
    Abstract [en]

    Siberian permafrost contains a globally significant pool of organic carbon (OC) that is vulnerable to enhanced warming and subsequent release into the contemporary carbon cycle. OC release by both fluvial and coastal erosion has been reported in the region, but the behaviour of this material in the Arctic Ocean is insufficiently understood. The balance between OC deposition and degradation on the East Siberian Arctic Shelf (ESAS) influences the climate-carbon cycle feedback in this area. In this study we couple measurements of glycerol dialkyl glycerol tetraethers (GDGTs) with bulk geochemical observations to improve knowledge of the sources of OC to the ESAS, the behaviour of specific biomarkers on the shelf and the balance between delivery and removal of different carbon pools. Branched GDGT (brGDGT) concentrations were highest close to river mouths, yet low in ’ice complex’ permafrost deposits, supporting recent observations that brGDGTs are mostly delivered by fluvial erosion, and may be a tracer for this in complex sedimentary environments. BrGDGT concentrations and the branched and isoprenoidal tetraether (BIT) index reduced quickly offshore, demonstrating a rapid reduction in river influence. Stable carbon isotope ratios changed at a different rate to the BIT index, suggesting not only that OC on the shelf is sourced from fluvial erosion but also that erosion of coastal sediments delivers substantial quantities of OC to the Arctic Ocean. A model of OC export from fluvial, coastal and marine sources is able to recreate the biomarker and bulk observations and provide estimates for the influence of fluvial and coastal OC across the whole shelf. The model shows that coastal erosion delivers 43 % of the OC and 87 % of the mineral sediment to the ESAS, but that rivers deliver 72 % of brGDGTs, indicating that brGDGTs can be used as a proxy for river-derived sediment.

  • 36. Vonk, J. E.
    et al.
    Sanchez-Garcia, L.
    Semiletov, I.
    Dudarev, O.
    Eglinton, T.
    Andersson, A.
    Gustafsson, Ö.
    Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea2010In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 7Article in journal (Refereed)
    Abstract [en]

    Climate warming in northeastern Siberia may induce thaw-mobilization of the organic carbon (OC) now held in permafrost. This study investigated the composition of terrestrial OC exported to Arctic coastal waters to both obtain a natural integration of terrestrial permafrost OC release and to further understand the fate of released carbon in the extensive Siberian Shelf Seas. Application of a variety of elemental, molecular and isotopic (delta C-13 and Delta C-14) analyses of both surface water suspended particulate matter and underlying surface sediments along a 500 km transect from Kolyma River mouth to the mid-shelf of the East Siberian Sea yielded information on the sources, degradation status and transport processes of thaw-mobilized soil OC. A three end-member dual-carbon-isotopic mixing model was applied to deduce the relative contributions from riverine, coastal erosion and marine sources. The mixing model was solved numerically using Monte Carlo simulations to obtain a fair representation of the uncertainties of both end-member composition and the end results. Riverine OC contributions to sediment OC decrease with increasing distance offshore (35 +/- 15 to 13 +/- 9%), whereas coastal erosion OC exhibits a constantly high contribution (51 +/- 11 to 60 +/- 12%) and marine OC increases offshore (9 +/- 7 to 36 +/- 10%). We attribute the remarkably strong imprint of OC from coastal erosion, extending up to similar to 500 km from the coast, to efficient offshoreward transport in these shallow waters presumably through both the benthic boundary layer and ice-rafting. There are also indications of simultaneous selective preservation of erosion OC compared to riverine OC. Molecular degradation proxies and radiocarbon contents indicated a degraded but young (Delta C-14 ca. -60% or ca. 500 C-14 years) terrestrial OC pool in surface water particulate matter, underlain by a less degraded but old (Delta C-14 ca. -500% or ca. 5500 C-14 years) terrestrial OC pool in bottom sediments. We suggest that the terrestrial OC fraction in surface water particulate matter is mainly derived from surface soil and recent vegetation fluvially released as buoyant organic-rich aggregates (e. g., humics), which are subjected to extensive processing during coastal transport. In contrast, terrestrial OC in the underlying sediments is postulated to originate predominantly from erosion of mineral-rich Pleistocene coasts (i.e., yedoma) and inland mineral soils. Sorptive association of this organic matter with mineral particles protects the OC from remineralization and also promotes rapid settling (ballasting) of the OC. Our findings corroborate recent studies by indicating that different Arctic surface soil OC pools exhibit distinguishing susceptibilities to degradation in coastal waters. Consequently, the general postulation of a positive feedback to global warming from degradation of permafrost carbon may be both attenuated (by reburial of one portion) and geographically displaced (degradation of released terrestrial permafrost OC far out over the Arctic shelf seas).

  • 37.
    Zahajská, Petra
    et al.
    Department of Geology, Lund University, Lund, Sweden; Institute of Geology and Palaeontology, Faculty of Science, Charles University, Prague, Czech Republic.
    Olid, Carolina
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Stadmark, Johanna
    Department of Geology, Lund University, Lund, Sweden.
    Fritz, Sherilyn C.
    Department of Earth and Atmospheric Sciences, School of Biological Sciences, University of Nebraska-Lincoln, NE, Lincoln, United States.
    Opfergelt, Sophie
    Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
    Conley, Daniel J.
    Department of Geology, Lund University, Lund, Sweden.
    Modern silicon dynamics of a small high-latitude subarctic lake2021In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 18, no 7, p. 2325-2345Article in journal (Refereed)
    Abstract [en]

    High biogenic silica (BSi) concentrations occur sporadically in lake sediments throughout the world; however, the processes leading to high BSi concentrations vary. We explored the factors responsible for the high BSi concentration in sediments of a small, high-latitude subarctic lake (Lake 850). The Si budget of this lake had not been fully characterized before to establish the drivers of BSi accumulation in this environment. To do this, we combined measurements of variations in stream discharge, dissolved silica (DSi) concentrations, and stable Si isotopes in both lake and stream water with measurements of BSi content in lake sediments. Water, radon, and Si mass balances revealed the importance of groundwater discharge as a main source of DSi to the lake, with groundwater-derived DSi inputs 3 times higher than those from ephemeral stream inlets. After including all external DSi sources (i.e., inlets and groundwater discharge) and estimating the total BSi accumulation in the sediment, we show that diatom production consumes up to 79 % of total DSi input. Additionally, low sediment accumulation rates were observed based on the dated gravity core. Our findings thus demonstrate that groundwater discharge and low mass accumulation rate can account for the high BSi accumulation during the last 150 cal yr BP. Globally, lakes have been estimated to retain one-fifth of the annual DSi terrestrial weathering flux that would otherwise be delivered to the ocean. Well-constrained lake mass balances, such as presented here, bring clarity to those estimates of the terrestrial Si cycle sinks.

1 - 37 of 37
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf