Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Gill, R. E.
    et al.
    Handel, C. M.
    Ruthrauff, D. R.
    INTERCONTINENTAL MIGRATORY CONNECTIVITY AND POPULATION STRUCTURING OF DUNLINS FROM WESTERN ALASKA2013In: The Condor, ISSN 0010-5422, E-ISSN 1938-5129, Vol. 115Article in journal (Refereed)
    Abstract [en]

    The Dunlin (Calidris alpina) is a polytypic shorebird with complex patterns of distribution and migration throughout its holarctic range. We analyzed mark-resighting data obtained between 1977 and 2010 from birds captured at two major staging areas in western Alaska to test the hypothesis that the migration patterns of Alaskan populations are a mixture of parallel and chain, similar to those of Dunlin populations in the western Palearctic. Birds marked on the Yukon-Kuskokwim Delta were found wintering in both Asia and North America, which documented the unexpected mixing of C. a. arcticola from northern Alaska and C. a. pacifica from western Alaska and contradicted our initial prediction of parallel migration pathways for these two subspecies. In its North American winter range C. a. pacifica segregated according to location of marking, confirming our prediction of a chain migration pattern within this population. Individuals of C. a. pacifica marked on the delta were resighted significantly farther north, mostly in southern British Columbia and Washington, than birds marked on the second, more southerly staging area on the Alaska Peninsula, which were resighted primarily in the San Francisco Bay area of northern California. We recommend additional studies use a combination of intrinsic and extrinsic markers to quantify the strength of migratory connectivity between breeding, staging, and wintering areas. Such information is needed to guide conservation efforts because the Dunlin and other waterbirds are losing intertidal habitats at an unprecedented rate and scale, particularly in the Yellow Sea and other parts of Asia.

  • 2. Lindstrom, Ake
    et al.
    Gill, Robert E., Jr.
    Jamieson, Sarah E.
    McCaffery, Brian
    Wennerberg, Liv
    Wikelski, Martin
    Klaassen, Marcel
    A PUZZLING MIGRATORY DETOUR: ARE FUELING CONDITIONS IN ALASKA DRIVING THE MOVEMENT OF JUVENILE SHARP-TAILED SANDPIPERS?2011In: The Condor, ISSN 0010-5422, E-ISSN 1938-5129, Vol. 113, no 1, p. 129-139Article in journal (Refereed)
    Abstract [en]

    Making a detour can be advantageous to a migrating bird if fuel-deposition rates at stopover sites along the detour are considerably higher than at stopover sites along a more direct route. One example of an extensive migratory detour is that of the Sharp-tailed Sandpiper (Calidris acuminata), of which large numbers of juveniles are found during fall migration in western Alaska. These birds take a detour of 1500-3400 km from the most direct route between their natal range in northeastern Siberia and nonbreeding areas in Australia. We studied the autumnal fueling rates and fuel loads of 357 Sharp-tailed Sandpipers captured in western Alaska. In early September the birds increased in mass at a rate of only 0.5% of lean body mass day(-1). Later in September, the rate of mass increase was about 6% of lean body mass day(-1), among the highest values found among similar-sized shorebirds around the world. Some individuals more than doubled their body mass because of fuel deposition, allowing non-stop flight of between 7100 and 9800 km, presumably including a trans-oceanic flight to the southern hemisphere. Our observations indicated that predator attacks were rare in our study area, adding another potential benefit of the detour. We conclude that the most likely reason for the Alaskan detour is that it allows juvenile Sharp-tailed Sand-pipers to put on large fuel stores at exceptionally high rates.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf