Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Douma, J. C.
    et al.
    Van Wijk, M. T.
    Lang, S. I.
    Shaver, G. R.
    The contribution of mosses to the carbon and water exchange of arctic ecosystems: quantification and relationships with system properties2007In: Plant, Cell and Environment, ISSN 0140-7791, E-ISSN 1365-3040, Vol. 30, no 10, p. 1205-1215Article in journal (Refereed)
    Abstract [en]

    Water vapour and CO2 exchange were measured in moss-dominated vegetation using a gas analyser and a 0.3 x 0.3 m chamber at 17 sites near Abisko, Northern Sweden and 21 sites near Longyearbyen, Svalbard, to quantify the contribution of mosses to ecosystem level fluxes. With the help of a simple light-response model, we showed that the moss contribution to ecosystem carbon uptake varied between 14 and 96%, with an average contribution of around 60%. This moss contribution could be related to the normalized difference vegetation index (NDVI) of the vegetation and the leaf area index (LAI) of the vascular plants. NDVI was a good predictor of gross primary production (GPP) of mosses and of the whole ecosystem, across different moss species, vegetation types and two different latitudes. NDVI was also correlated with thickness of the active green moss layer. Mosses played an important role in water exchange. They are expected to be most important to gas exchange during spring when leaves are not fully developed.

  • 2. Schollert, Michelle
    et al.
    Kivimäenpää, Minna
    Valolahti, Hanna M.
    Rinnan, Riikka
    Climate change alters leaf anatomy, but has no effects on volatile emissions from arctic plants2015In: Plant, Cell and Environment, ISSN 0140-7791, E-ISSN 1365-3040, Vol. 38, no 10, p. 2048-2060Article in journal (Refereed)
    Abstract [en]

    Biogenic volatile organic compound (BVOC) emissions are expected to change substantially because of the rapid advancement of climate change in the Arctic. BVOC emission changes can feed back both positively and negatively on climate warming. We investigated the effects of elevated temperature and shading on BVOC emissions from arctic plant species Empetrum hermaphroditum, Cassiope tetragona, Betula nana and Salix arctica. Measurements were performed in situ in long-term field experiments in subarctic and high Arctic using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography-mass spectrometry. In order to assess whether the treatments had resulted in anatomical adaptations, we additionally examined leaf anatomy using light microscopy and scanning electron microscopy. Against expectations based on the known temperature and light-dependency of BVOC emissions, the emissions were barely affected by the treatments. In contrast, leaf anatomy of the studied plants was significantly altered in response to the treatments, and these responses appear to differ from species found at lower latitudes. We suggest that leaf anatomical acclimation may partially explain the lacking treatment effects on BVOC emissions at plant shoot-level. However, more studies are needed to unravel why BVOC emission responses in arctic plants differ from temperate species.

  • 3. Semerdjieva, S I
    et al.
    Sheffield, E
    Phoenix, G K
    Gwynn-Jones, D
    Callaghan, T V
    Johnson, G N
    Contrasting strategies for UV-B screening in sub-Arctic dwarf shrubs2003In: Plant, Cell and Environment, ISSN 0140-7791, E-ISSN 1365-3040, Vol. 26, no 6, p. 957-964Article in journal (Refereed)
    Abstract [en]

    The content and distribution of UV-absorbing phenolic compounds was investigated in leaves of three species of Vaccinium co-existing at a site in north Sweden. Vaccinium myrtillus L., Vaccinium vitis-idaea L., and Vaccinium uliginosum L. exhibit markedly different strategies, in terms of localization and content of leaf phenolics and in their responses to UV-B enhancement. Plants were exposed to either ambient radiation or to enhancement of UV-B corresponding to 15% (clear sky) depletion of stratospheric ozone for approximately 10 years prior to commencement of this study. Vaccinium myrtillus contained the highest concentration of methanol-extractable UV-B-absorbing compounds, which was elevated in plants exposed to enhanced UV-B. Fluorescence and confocal laser scanning microscopy showed that these compounds were distributed throughout the leaf, and were particularly concentrated in chlorophyll-containing cells. In V. vitis-idaea , most phenolic compounds were cell wall-bound and concentrated in the walls of the epidermis; this pool increased in response to UV-B enhancement. It is suggested that these two plants represent extreme forms of two divergent strategies for UV-B screening, the different responses possibly being related to leaf longevity in the two species. The response of V. uliginosum was intermediate between the other two, with high concentrations of cell wall-bound phenolics in the epidermis but with this pool decreasing, and the methanol-soluble pool tending to increase, after exposure to enhanced UV-B. One explanation for this response is that this plant is deciduous, like V. myrtillus , but has leaves that are structurally similar to those of V. vitis-idaea .

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf