Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Blume-Werry, Gesche
    et al.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Lindén, Elin
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Andresen, Lisa
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Classen, Aimée T.
    Sanders, Nathan J.
    von Oppen, Jonathan
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Sundqvist, Maja K.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Proportion of fine roots, but not plant biomass allocation below ground, increases with elevation in arctic tundra2018In: Journal of Vegetation Science, ISSN 1100-9233, E-ISSN 1654-1103, Vol. 29, no 2, p. 226-235Article in journal (Refereed)
    Abstract [en]

    Questions: Roots represent a considerable proportion of biomass, primary production and litter input in arctic tundra, and plant allocation of biomass to above- or below-ground tissue in response to climate change is a key factor in the future C balance of these ecosystems. According to optimality theory plants allocate C to the above- or below-ground structure that captures the most limiting resource. We used an elevational gradient to test this theory and as a space-for-time substitution to inform on tundra carbon allocation patterns under a shifting climate, by exploring if increasing elevation was positively related to the root:shoot ratio, as well as a larger plant allocation to adsorptive over storage roots.

    Location: Arctic tundra heath dominated by Empetrum hermaphroditum close to Abisko, Sweden.

    Methods: We measured root:shoot and fine:coarse root ratios of the plant communities along an elevational gradient by sampling above- and below-ground biomass, further separating root biomass into fine (<1 mm) and coarse roots.

    Results: Plant biomass was higher at the lower elevations, but the root:shoot ratio did not vary with elevation. Resource allocation to fine relative to coarse roots increased with elevation, resulting in a fine:coarse root ratio that more than doubled with increasing elevation.

    Conclusions: Contrary to previous works, the root:shoot ratio along this elevational gradient remained stable. However, communities along our study system were dominated by the same species at each elevation, which suggests that when changes in the root:shoot ratio occur with elevation these changes may be driven by differences in allocation patterns among species and thus turnover in plant community structure. Our results further reveal that the allocation of biomass to fine relative to coarse roots can differ between locations along an elevational gradient, even when overall above- vs below-ground biomass allocation does not. Given the functionally different roles of fine vs coarse roots this could have large implications for below-ground C cycling. Our results highlight the importance of direct effects vs indirect effects (such as changes in plant community composition and nutrient availability) of climate change for future C allocation above and below ground.

  • 2. De Long, Jonathan R.
    et al.
    Sundqvist, Maja K.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Gundale, Michael J.
    Giesler, Reiner
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Wardle, David A.
    Effects of elevation and nitrogen and phosphorus fertilization on plant defence compounds in subarctic tundra heath vegetation2016In: Functional Ecology, ISSN 0269-8463, E-ISSN 1365-2435, Vol. 30, no 2, p. 314-325Article in journal (Refereed)
    Abstract [en]

    Plant chemical and structural defence compounds are well known to impact upon herbivory of fresh leaves and influence decomposition rates after leaf senescence. A number of theories predict that alleviating nutrient limitation and reducing other environmental stressors will result in decreased production of plant chemical defences. In this study, we measured plant defence properties [total polyphenols (TP), condensed tannins (CT) and lignin concentrations, and protein complexation capacity (PCC)] in both fresh and senesced plant leaves in a fully factorial N and P fertilization experiment set-up at each of three elevations along an elevational gradient in Swedish subarctic tundra heath vegetation. Further, we performed a decomposition of variance analysis on community-weighted averages (CWAs) of plant defence properties to determine the relative contributions of interspecific and intraspecific variation to the total variation observed in response to elevation and nutrient addition. We hypothesized that N fertilization would reduce plant defence properties and that this reduction would be greater at higher elevations, while the effects of P fertilization would have no effect at any elevation. At the community level, N addition reduced CT and PCC in both fresh and senesced leaves and TP in senesced leaves, while P addition had few effects, broadly in line with our hypothesis. The effects of N addition frequently varied with elevation, but in contrast to our hypothesis, the said effects were strongest at the lowest elevations. The effects of N addition and the interactive effect of N with elevation were primarily driven by intraspecific, rather than interspecific, variation. Our findings suggest that as temperatures warm and N availability increases due to global climate change, secondary metabolites in subarctic heath vegetation will decline particularly within species. Our results highlight the need to consider the effects of both nutrient availability and temperature, and their interaction, in driving subarctic plant defence.

  • 3.
    Jelk, Caroline
    Karlstads universitet, Institutionen för miljö- och livsvetenskaper.
    Skillnader i inomartsvariation i morfologiska karaktärer av Empetrum hermaphroditum mellan habitat2017Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    This study is based on data of a previous study investigating whether snow depth affects average growth and reproduction of Empetrum hermaphroditum over a latitudinal and climatic gradient (Bienau et al. 2014). I tested the effects region and snow depth on intraspecific variation of growth-related variables instead, to clarify whether the species has the potential to cope with changes in snow depth and increased growing season in the future. Earlier research results led to the hypothesis that intraspecific variation depends on resources in the habitat and raises the question of whether there is higher variation in Empetrum in favorable habitats such as birch forests and habitats with deep snow cover than in adverse habitats such as those with a shallow snow cover. My analyses suggest that there were significant differences in variability between habitats in some morphological characters. However, not all of these characters follow the expected pattern that the favorable habitats would have a greater variety. Overall, significant differences were found in variation in the length of the main and the lateral shoots, leaf vitality on the main shoots and the dry weight of the stem. These results imply that the above hypothesis is correct for some growth-related variables. 

  • 4.
    Jägerbrand, Annika K
    et al.
    Göteborgs Universitet.
    Lindblad, Karin E M
    Göteborgs Universitet.
    Björk, Robert G
    Göteborgs Universitet.
    Alatalo, Juha M
    Vinnova.
    Molau, Ulf
    Göteborgs Universitet.
    Bryophyte and lichen diversity under simulated environmental change compared with observed variation in unmanipulated alpine tundra2006In: Biodiversity and Conservation, ISSN 0960-3115, E-ISSN 1572-9710, Vol. 15, no 14, p. 4453-4475Article in journal (Refereed)
    Abstract [en]

    Effects of simulated environmental change on bryophyte and lichen species richness and diversity in alpine tundra were investigated in a 5-year experiment at Latnjajaure, northern Sweden. The experiment had a factorial design including fertilisation and temperature enhancement in one meadow and one heath plant community. Responses in species richness, biodiversity, and species composition of bryophytes and lichens to experimental treatments were compared to the observed variation in six naturally occurring plant communities. The combination of fertilisation and enhanced temperature resulted in a species impoverishment, for bryophytes in the bryophyte-dominated community, and for lichens in the lichen-dominated communities, but the species composition stayed within the observed natural variation. During the course of the study, no species new to the investigated mid-alpine landscape were recorded, but that scenario is realistic within a decade when comparing with the processes seen in vascular plants.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf