Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. B., Ellenbogen Jared
    et al.
    A., Borton Mikayla
    B., McGivern Bridget
    R., Cronin Dylan
    W., Hoyt David
    Viviana, Freire-Zapata
    K., McCalley Carmody
    K., Varner Ruth
    M., Crill Patrick
    A., Wehr Richard
    P., Chanton Jeffrey
    J., Woodcroft Ben
    M., Tfaily Malak
    W., Tyson Gene
    I., Rich Virginia
    C., Wrighton Kelly
    Methylotrophy in the Mire: direct and indirect routes for methane production in thawing permafrost2023In: mSystems, ISSN 0021-9193, Vol. n/a, no n/aArticle in journal (Refereed)
    Abstract [en]

    While wetlands are major sources of biogenic methane (CH4), our understanding of resident microbial metabolism is incomplete, which compromises the prediction of CH4 emissions under ongoing climate change. Here, we employed genome-resolved multi-omics to expand our understanding of methanogenesis in the thawing permafrost peatland of Stordalen Mire in Arctic Sweden. In quadrupling the genomic representation of the site’s methanogens and examining their encoded metabolism, we revealed that nearly 20% of the metagenome-assembled genomes (MAGs) encoded the potential for methylotrophic methanogenesis. Further, 27% of the transcriptionally active methanogens expressed methylotrophic genes; for Methanosarcinales and Methanobacteriales MAGs, these data indicated the use of methylated oxygen compounds (e.g., methanol), while for Methanomassiliicoccales, they primarily implicated methyl sulfides and methylamines. In addition to methanogenic methylotrophy, >1,700 bacterial MAGs across 19 phyla encoded anaerobic methylotrophic potential, with expression across 12 phyla. Metabolomic analyses revealed the presence of diverse methylated compounds in the Mire, including some known methylotrophic substrates. Active methylotrophy was observed across all stages of a permafrost thaw gradient in Stordalen, with the most frozen non-methanogenic palsa found to host bacterial methylotrophy and the partially thawed bog and fully thawed fen seen to house both methanogenic and bacterial methylotrophic activities. Methanogenesis across increasing permafrost thaw is thus revised from the sole dominance of hydrogenotrophic production and the appearance of acetoclastic at full thaw to consider the co-occurrence of methylotrophy throughout. Collectively, these findings indicate that methanogenic and bacterial methylotrophy may be an important and previously underappreciated component of carbon cycling and emissions in these rapidly changing wetland habitats.

  • 2. Cruz-Paredes, Carla
    et al.
    Tájmel, Dániel
    Rousk, Johannes
    Can moisture affect temperature dependences of microbial growth and respiration?2021In: Soil Biology and Biochemistry, ISSN 0038-0717, E-ISSN 1879-3428, Vol. 156Article in journal (Refereed)
    Abstract [en]

    It is of great importance to understand how terrestrial ecosystems will respond to global changes. However, most experimental approaches have focused on single factors. In natural systems, moisture and temperature often change simultaneously, and they can interact and shape microbial responses. Even though soil moisture and temperature are very important factors controlling microbial activity, there is disagreement on the dependence of microbial rates on temperature and moisture as well as their sensitivity when both variables change simultaneously. Here we created a moisture gradient and determined high resolution intrinsic temperature dependences for bacterial and fungal growth rates as well as respiration rates. We found that microbial rates decreased with lower moisture and increased with higher temperatures until optimum values. Additionally, we found independence between temperature and moisture as rate modifiers. We also found that temperature sensitivities (Q10) for microbial growth and respiration were not affected by changes in moisture. This provided an experimental framework to validate assumptions of temperature and moisture rate modifiers used in ecosystem and global cycling models (GCMs).

  • 3.
    de Miranda, Joachim R.
    et al.
    Swedish Univ Agr Sci, Dept Ecol, S-75007 Uppsala, Sweden..
    Hedman, Harald
    Swedish Univ Agr Sci, Dept Ecol, S-75007 Uppsala, Sweden..
    Onorati, Piero
    Swedish Univ Agr Sci, Dept Ecol, S-75007 Uppsala, Sweden..
    Stephan, Jorg
    Swedish Univ Agr Sci, Dept Ecol, S-75007 Uppsala, Sweden..
    Karlberg, Olof
    Uppsala universitet, Molekylär medicin.
    Bylund, Helena
    Swedish Univ Agr Sci, Dept Ecol, S-75007 Uppsala, Sweden..
    Terenius, Olle
    Uppsala universitet, Mikrobiologi.
    Characterization of a Novel RNA Virus Discovered in the Autumnal Moth Epirrita autumnata in Sweden2017In: Viruses, E-ISSN 1999-4915, Vol. 9, no 8, article id 214Article in journal (Refereed)
    Abstract [en]

    A novel, 10 kb RNA virus-tentatively named 'Abisko virus'-was discovered in the transcriptome data of a diseased autumnal moth (Epirrita autumnata) larva, as part of a search for the possible causes of the cyclical nature and mortality associated with geometrid moth dynamics and outbreaks in northern Fennoscandia. Abisko virus has a genome organization similar to that of the insect-infecting negeviruses, but phylogenetic and compositional bias analyses also reveal strong affiliations with plant-infecting viruses, such that both the primary host origin and taxonomic identity of the virus remain in doubt. In an extensive set of larval, pupal, and adult autumnal moth and winter moth (Operophtera brumata) outbreak samples, the virus was only detected in a few adult E. autumnata moths as well as the single larval transcriptome. The Abisko virus is therefore unlikely to be a factor in the Fennoscandia geometrid population dynamics.

  • 4. Doherty, Stacey Jarvis
    et al.
    Barbato, Robyn A.
    Grandy, A. Stuart
    Thomas, W. Kelley
    Monteux, Sylvain
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Johansson, Margareta
    Ernakovich, Jessica G.
    The Transition From Stochastic to Deterministic Bacterial Community Assembly During Permafrost Thaw Succession2020In: Frontiers in Microbiology, E-ISSN 1664-302X, Vol. 11, article id 596589Article in journal (Refereed)
    Abstract [en]

    The Northern high latitudes are warming twice as fast as the global average, and permafrost has become vulnerable to thaw. Changes to the environment during thaw leads to shifts in microbial communities and their associated functions, such as greenhouse gas emissions. Understanding the ecological processes that structure the identity and abundance (i.e., assembly) of pre- and post-thaw communities may improve predictions of the functional outcomes of permafrost thaw. We characterized microbial community assembly during permafrost thaw using in situ observations and a laboratory incubation of soils from the Storflaket Mire in Abisko, Sweden, where permafrost thaw has occurred over the past decade. In situ observations indicated that bacterial community assembly was driven by randomness (i.e., stochastic processes) immediately after thaw with drift and dispersal limitation being the dominant processes. As post-thaw succession progressed, environmentally driven (i.e., deterministic) processes became increasingly important in structuring microbial communities where homogenizing selection was the only process structuring upper active layer soils. Furthermore, laboratory-induced thaw reflected assembly dynamics immediately after thaw indicated by an increase in drift, but did not capture the long-term effects of permafrost thaw on microbial community dynamics. Our results did not reflect a link between assembly dynamics and carbon emissions, likely because respiration is the product of many processes in microbial communities. Identification of dominant microbial community assembly processes has the potential to improve our understanding of the ecological impact of permafrost thaw and the permafrost-climate feedback.

  • 5. Hamard, Samuel
    et al.
    Céréghino, Regis
    Barret, Maialen
    Sytiuk, Anna
    Lara, Enrique
    Dorrepaal, Ellen
    Kardol, Paul
    Küttim, Martin
    Lamentowicz, Mariusz
    Leflaive, Joséphine
    Le Roux, Gaël
    Tuittila, Eeva-Stiina
    Jassey, Vincent E. J.
    Contribution of microbial photosynthesis to peatland carbon uptake along a latitudinal gradient2021In: Journal of Ecology, ISSN 0022-0477, E-ISSN 1365-2745, Vol. 109, no 9, p. 3424-3441Article in journal (Refereed)
    Abstract [en]
    1. Phototrophic microbes, also known as micro-algae, display a high abundance in many terrestrial surface soils. They contribute to atmospheric carbon dioxide fluxes through their photosynthesis, and thus regulate climate similar to plants. However, microbial photosynthesis remains overlooked in most terrestrial ecosystems. Here, we hypothesise that phototrophic microbes significantly contribute to peatland C uptake, unless environmental conditions limit their development and their photosynthetic activity.
    2. To test our hypothesis, we studied phototrophic microbial communities in five peatlands distributed along a latitudinal gradient in Europe. By means of metabarcoding, microscopy and cytometry analyses, as well as measures of photosynthesis, we investigated the diversity, absolute abundance and photosynthetic rates of the phototrophic microbial communities.
    3. We identified 351 photosynthetic prokaryotic and eukaryotic operational taxonomic units (OTUs) across the five peatlands. We found that water availability and plant composition were important determinants of the composition and the structure of phototrophic microbial communities. Despite environmental shifts in community structure and composition, we showed that microbial C fixation rates remained similar along the latitudinal gradient. Our results further revealed that phototrophic microbes accounted for approximately 10% of peatland C uptake.
    4. Synthesis. Our findings show that phototrophic microbes are extremely diverse and abundant in peatlands. While species turnover with environmental conditions, microbial photosynthesis similarly contributed to peatland C uptake at all latitudes. We estimate that phototrophic microbes take up around 75 MT CO2 per year in northern peatlands. This amount roughly equals the magnitude of projected peatland C loss due to climate warming and highlights the importance of phototrophic microbes for the peatland C cycle.
  • 6. Ji, Mengzhi
    et al.
    Fan, Xiangyu
    Cornell, Carolyn R.
    Zhang, Ya
    Yuan, Mengting Maggie
    Tian, Zhen
    Sun, Kaili
    Gao, Rongfeng
    Liu, Yang
    Zhou, Jizhong
    Tundra Soil Viruses Mediate Responses of Microbial Communities to Climate Warming2023In: mBio, ISSN 2161-2129, E-ISSN 2150-7511, Vol. 14, no 2Article in journal (Refereed)
    Abstract [en]

    The rise of global temperature causes the degradation of the substantial reserves of carbon (C) stored in tundra soils, in which microbial processes play critical roles. Viruses are known to influence the soil C cycle by encoding auxiliary metabolic genes and infecting key microorganisms, but their regulation of microbial communities under climate warming remains unexplored. In this study, we evaluated the responses of viral communities for about 5 years of experimental warming at two depths (15 to 25 cm and 45 to 55 cm) in the Alaskan permafrost region. Our results showed that the viral community and functional gene composition and abundances (including viral functional genes related to replication, structure, infection, and lysis) were significantly influenced by environmental conditions such as total nitrogen (N), total C, and soil thawing duration. Although long-term warming did not impact the viral community composition at the two depths, some glycoside hydrolases encoded by viruses were more abundant at both depths of the warmed plots. With the continuous reduction of total C, viruses may alleviate methane release by altering infection strategies on methanogens. Importantly, viruses can adopt lysogenic and lytic lifestyles to manipulate microbial communities at different soil depths, respectively, which could be one of the major factors causing the differences in microbial responses to warming. This study provides a new ecological perspective on how viruses regulate the responses of microbes to warming at community and functional scales.

  • 7. Lí, Jin-Tao
    et al.
    Hicks, Lettice C.
    Brangarí, Albert C.
    Tájmel, Dániel
    Cruz-Paredes, Carla
    Rousk, Johannes
    Subarctic winter warming promotes soil microbial resilience to freeze–thaw cycles and enhances the microbial carbon use efficiency2024In: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 30, no 1Article in journal (Refereed)
    Abstract [en]

    Climate change is predicted to cause milder winters and thus exacerbate soil freeze?thaw perturbations in the subarctic, recasting the environmental challenges that soil microorganisms need to endure. Historical exposure to environmental stressors can facilitate the microbial resilience to new cycles of that same stress. However, whether and how such microbial memory or stress legacy can modulate microbial responses to cycles of frost remains untested. Here, we conducted an in situ field experiment in a subarctic birch forest, where winter warming resulted in a substantial increase in the number and intensity of freeze?thaw events. After one season of winter warming, which raised mean surface and soil (?8?cm) temperatures by 2.9 and 1.4°C, respectively, we investigated whether the in situ warming-induced increase in frost cycles improved soil microbial resilience to an experimental freeze?thaw perturbation. We found that the resilience of microbial growth was enhanced in the winter warmed soil, which was associated with community differences across treatments. We also found that winter warming enhanced the resilience of bacteria more than fungi. In contrast, the respiration response to freeze?thaw was not affected by a legacy of winter warming. This translated into an enhanced microbial carbon-use efficiency in the winter warming treatments, which could promote the stabilization of soil carbon during such perturbations. Together, these findings highlight the importance of climate history in shaping current and future dynamics of soil microbial functioning to perturbations associated with climate change, with important implications for understanding the potential consequences on microbial-mediated biogeochemical cycles.

  • 8.
    Mondav, Rhiannon
    The University of Queensland, Australia.
    Microbial dynamics in a thawing world: Microbial ecology of a permafrost active layer2014Independent thesis Advanced level (degree of Master (Two Years))Student thesis
  • 9.
    Monteux, Sylvain
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    A song of ice and mud: Interactions of microbes with roots, fauna and carbon in warming permafrost-affected soils2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Permafrost-affected soils store a large quantity of soil organic matter (SOM) – ca. half of worldwide soil carbon – and currently undergo rapid and severe warming due to climate change. Increased SOM decomposition by microorganisms and soil fauna due to climate change, poses the risk of a positive climate feedback through the release of greenhouse gases. Direct effects of climate change on SOM decomposition, through such mechanisms as deepening of the seasonally-thawing active layer and increasing soil temperatures, have gathered considerable scientific attention in the last two decades. Yet, indirect effects mediated by changes in plant, microbial, and fauna communities, remain poorly understood. Microbial communities, which may be affected by climate change-induced changes in vegetation composition or rooting patterns, and may in turn affect SOM decomposition, are the primary focus of the work described in this thesis.

    We used (I) a field-scale permafrost thaw experiment in a palsa peatland, (II) a laboratory incubation of Yedoma permafrost with inoculation by exotic microorganisms, (III) a microcosm experiment with five plant species grown either in Sphagnum peat or in newly-thawed permafrost peat, and (IV) a field-scale cold season warming experiment in cryoturbated tundra to address the indirect effects of climate change on microbial drivers of SOM decomposition. Community composition data for bacteria and fungi were obtained by amplicon sequencing and phospholipid fatty acid extraction, and for collembola by Tullgren extraction, alongside measurements of soil chemistry, CO2 emissions and root density.

    We showed that in situ thawing of a palsa peatland caused colonization of permafrost soil by overlying soil microbes. Further, we observed that functional limitations of permafrost microbial communities can hamper microbial metabolism in vitro. Relieving these functional limitations in vitro increased cumulative CO2 emissions by 32% over 161 days and introduced nitrification. In addition, we found that different plant species did not harbour different rhizosphere bacterial communities in Sphagnum peat topsoil, but did when grown in newly-thawed permafrost peat. Plant species may thus differ in how they affect functional limitations in thawing permafrost soil. Therefore, climate change-induced changes in vegetation composition might alter functioning in the newly-thawed, subsoil permafrost layer of northern peatlands, but less likely so in the topsoil. Finally, we observed that vegetation encroachment in barren cryoturbated soil, due to reduced cryogenic activity with higher temperatures, change both bacterial and collembola community composition, which may in turn affect soil functioning.

    This thesis shows that microbial community dynamics and plant-decomposer interactions play an important role in the functioning of warming permafrost-affected soils. More specifically, it demonstrates that the effects of climate change on plants can trickle down on microbial communities, in turn affecting SOM decomposition in thawing permafrost.

    Download full text (pdf)
    FULLTEXT01
    Download (pdf)
    SPIKBLAD01
  • 10. Obermeier, Melanie Maria
    et al.
    Wicaksono, Wisnu Adi
    Taffner, Julian
    Bergna, Alessandro
    Poehlein, Anja
    Cernava, Tomislav
    Lindstaedt, Stefanie
    Lovric, Mario
    Müller Bogotá, Christina Andrea
    Berg, Gabriele
    Plant resistome profiling in evolutionary old bog vegetation provides new clues to understand emergence of multi-resistance2020In: The ISME Journal, ISSN 1751-7362, E-ISSN 1751-7370Article in journal (Refereed)
    Abstract [en]

    The expanding antibiotic resistance crisis calls for a more in depth understanding of the importance of antimicrobial resistance genes (ARGs) in pristine environments. We, therefore, studied the microbiome associated with Sphagnum moss forming the main vegetation in undomesticated, evolutionary old bog ecosystems. In our complementary analysis of culture collections, metagenomic data and a fosmid library from different geographic sites in Europe, we identified a low abundant but highly diverse pool of resistance determinants, which targets an unexpectedly broad range of 29 antibiotics including natural and synthetic compounds. This derives both, from the extraordinarily high abundance of efflux pumps (up to 96%), and the unexpectedly versatile set of ARGs underlying all major resistance mechanisms. Multi-resistance was frequently observed among bacterial isolates, e.g. in Serratia, Rouxiella, Pandoraea, Paraburkholderia and Pseudomonas. In a search for novel ARGs, we identified the new class A β-lactamase Mm3. The native Sphagnum resistome comprising a highly diversified and partially novel set of ARGs contributes to the bog ecosystem´s plasticity. Our results reinforce the ecological link between natural and clinically relevant resistomes and thereby shed light onto this link from the aspect of pristine plants. Moreover, they underline that diverse resistomes are an intrinsic characteristic of plant-associated microbial communities, they naturally harbour many resistances including genes with potential clinical relevance.

  • 11. Ramirez, Kelly S.
    et al.
    Knight, Christopher G.
    de Hollander, Mattias
    Brearley, Francis Q.
    Constantinides, Bede
    Cotton, Anne
    Creer, Si
    Crowther, Thomas W.
    Davison, John
    Delgado-Baquerizo, Manuel
    Dorrepaal, Ellen
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Elliott, David R.
    Fox, Graeme
    Griffiths, Robert I.
    Hale, Chris
    Hartman, Kyle
    Houlden, Ashley
    Jones, David L.
    Krab, Eveline J.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Maestre, Fernando T.
    McGuire, Krista L.
    Monteux, Sylvain
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Orr, Caroline H.
    van der Putten, Wim H.
    Roberts, Ian S.
    Robinson, David A.
    Rocca, Jennifer D.
    Rowntree, Jennifer
    Schlaeppi, Klaus
    Shepherd, Matthew
    Singh, Brajesh K.
    Straathof, Angela L.
    Bhatnagar, Jennifer M.
    Thion, Cecile
    van der Heijden, Marcel G. A.
    de Vries, Franciska T.
    Detecting macroecological patterns in bacterial communities across independent studies of global soils2018In: Nature Microbiology, E-ISSN 2058-5276, Vol. 3, no 2, p. 189-196Article in journal (Refereed)
    Abstract [en]

    The emergence of high-throughput DNA sequencing methods provides unprecedented opportunities to further unravel bacterial biodiversity and its worldwide role from human health to ecosystem functioning. However, despite the abundance of sequencing studies, combining data from multiple individual studies to address macroecological questions of bacterial diversity remains methodically challenging and plagued with biases. Here, using a machine-learning approach that accounts for differences among studies and complex interactions among taxa, we merge 30 independent bacterial data sets comprising 1,998 soil samples from 21 countries. Whereas previous meta-analysis efforts have focused on bacterial diversity measures or abundances of major taxa, we show that disparate amplicon sequence data can be combined at the taxonomy-based level to assess bacterial community structure. We find that rarer taxa are more important for structuring soil communities than abundant taxa, and that these rarer taxa are better predictors of community structure than environmental factors, which are often confounded across studies. We conclude that combining data from independent studies can be used to explore bacterial community dynamics, identify potential 'indicator' taxa with an important role in structuring communities, and propose hypotheses on the factors that shape bacterial biogeography that have been overlooked in the past.

  • 12. Tájmel, Dániel
    et al.
    Cruz-Paredes, Carla
    Rousk, Johannes
    Heat wave-induced microbial thermal trait adaptation and its reversal in the Subarctic2024In: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 30, no 1Article in journal (Refereed)
    Abstract [en]

    Climate change predictions suggest that arctic and subarctic ecosystems will be particularly affected by rising temperatures and extreme weather events, including severe heat waves. Temperature is one of the most important environmental factors controlling and regulating microbial decomposition in soils; therefore, it is critical to understand its impact on soil microorganisms and their feedback to climate warming. We conducted a warming experiment in a subarctic birch forest in North Sweden to test the effects of summer heat waves on the thermal trait distributions that define the temperature dependences for microbial growth and respiration. We also determined the microbial temperature dependences 10 and 12 months after the heat wave simulation had ended to investigate the persistence of the thermal trait shifts. As a result of warming, the bacterial growth temperature dependence shifted to become warm-adapted, with a similar trend for fungal growth. For respiration, there was no shift in the temperature dependence. The shifts in thermal traits were not accompanied by changes in α- or β-diversity of the microbial community. Warming increased the fungal-to-bacterial growth ratio by 33% and decreased the microbial carbon use efficiency by 35%, and both these effects were caused by the reduction in moisture the warming treatments caused, while there was no evidence that substrate depletion had altered microbial processes. The warm-shifted bacterial thermal traits were partially restored within one winter but only fully recovered to match ambient conditions after 1 year. To conclude, a summer heat wave in the Subarctic resulted in (i) shifts in microbial thermal trait distributions; (ii) lower microbial process rates caused by decreased moisture, not substrate depletion; and (iii) no detectable link between the microbial thermal trait shifts and community composition changes.

  • 13. Yuan, Mingyue
    et al.
    Na, Meng
    Hicks, Lettice C.
    Rousk, Johannes
    Limiting resources for soil microbial growth in climate change simulation treatments in the subarctic2023In: Ecology, ISSN 0012-9658, E-ISSN 1939-9170, Vol. n/a, no n/aArticle in journal (Refereed)
    Abstract [en]

    The microbial use of resources to sustain life and reproduce influences for example, decomposition and plant nutrient provisioning. The study of “limiting factors” has shed light on the interaction between plants and their environment. Here, we investigated whether carbon (C), nitrogen (N), or phosphorus (P) was limiting for soil microorganisms in a subarctic tundra heath, and how changes in resource availability associated with climate change affected this. We studied samples in which changes in resource availability due to climate warming were simulated by the addition of birch litter and/or inorganic N. To these soils, we supplied factorial C (as glucose), N (as NH4NO3), and P (as KH2PO4/K2HPO4) additions (“limiting factor assays,” LFA), to determine the limiting factors. The combination of C and P induced large growth responses in all soils and, combined with a systematic tendency for growth increases by C, this suggested that total microbial growth was primarily limited by C and secondarily by P. The C limitation was alleviated by the field litter treatment and strengthened by N fertilization. The microbial growth response to the LFA-C and LFA-P addition was strongest in the field-treatment that combined litter and N addition. We also found that bacteria were closer to P limitation than fungi. Our results suggest that, under a climate change scenario, increased C availability resulting from Arctic greening, treeline advance, and shrubification will reduce the microbial C limitation, while increased N availability resulting from warming will intensify the microbial C limitation. Our results also suggest that the synchronous increase of both C and N availability might lead to a progressive P limitation of microbial growth, primarily driven by bacteria being closer to P limitation. These shifts in microbial resource limitation might lead to a microbial targeting of the limiting element from organic matter, and also trigger competition for nutrients between plants and microorganisms, thus modulating the productivity of the ecosystem.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf