Change search
Refine search result
1234 1 - 50 of 164
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Agnan, Yannick
    et al.
    Courault, Romain
    Alexis, Marie A.
    Zanardo, Tony
    Cohen, Marianne
    Sauvage, Margaux
    Castrec-Rouelle, Maryse
    Distribution of trace and major elements in subarctic ecosystem soils: Sources and influence of vegetation2019In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 682, p. 650-662Article in journal (Refereed)
    Abstract [en]

    Artic and subarctic environments are particularly sensitive to climate change with a faster warming compared to other latitudes. Vegetation is changing but its role on the biogeochemical cycling is poorly understood. In this study, we evaluated the distribution of trace elements in subarctic soils from different land covers at Abisko, northern Sweden: grassland, moor, broad-leaved forest, and peat bog. Using various multivariate analysis approaches, results indicated a spatial heterogeneity with a strong influence of soil horizon classes considered: lithogenic elements (e.g., Al, Cr, Ti) were accumulated in mineral horizon classes and surface process-influenced elements (e.g., Cd, Cu, Se) in organic horizon classes. Atmospheric influences included contamination by both local mines (e.g., Cu, Fe, Ni) and regional or long-range atmospheric transport (e.g., Cd, Pb, Zn). A non-negative matrix factorization was used to estimate, for each element, the contribution of various sources identified. For the first time, a comparison between geochemical and ecological data was performed to evaluate the influence of vegetation on element distribution. Apart from soil pH that could control dynamics of As, Cu, and Se, two vegetation classes were reported to be correlated to geochemical factors: forbs and shrubs/dwarf shrubs probably due to their annual vs. perennial activities, respectively. Since these are considered as the main vegetation classes that quickly evolve with climate change, we expect to see modifications in trace element biogeochemical cycling in the future.

  • 2. Ahonen, Veronica
    Hydrological changes during the last millennium in three subarctic permafrost peatlands and their link to climate shifts2019Independent thesis Advanced level (degree of Master (Two Years))Student thesis
    Abstract [en]

    Permafrost peatlands have the capacity to store significant amounts of carbon, and thus they act as important controllers of the climate. Approximately 14% of the world’s soil organic carbon pool is stored in permafrost peatlands, which are sensitive to climatic fluctuations due to their location in the high latitudes of the subarctic zone. Permafrost peatlands also act as a habitat for a large number of moisture-sensitive organisms, such as bryophytes and testate amoebae, which can be used to study how the hydrology of peatlands has changed and will continue to change throughout time, giving us an opportunity to predict the future of peatlands under a changing climate. In this Master’s Thesis I examined the testate amoebae composition and used these species as indicators to study hydrological fluctuations from three subarctic permafrost peatland cores extracted from Taavavuoma and Abisko in northern Sweden. The species compositions were combined with radiocarbon (14C) and lead (210Pb) dates to reconstruct the past water table levels for the late Holocene, spanning four climatic periods. The reconstructions were then compared to past studies on testate amoebae to understand how permafrost peatlands and their species assemblages respond to changes in the hydrology of the active layer of the peat. Out of the study sites only the Taavavuoma cores spanned the Dark Age Cold Period (DACP) and Medieval Climate Anomaly (MCA). Species compositions in both cores indicated fluctuating water tables during the DACP, but during the MCA the results began to contradict with one site showing a wetter, and the other a drier MCA. Two out of three study sites indicated a wetter Little Ice Age and a drier Post-Industrial Warming, supporting past studies indicating similar results, whereas one study site gave opposite results. The results indicated large variability in testate amoebae assemblages throughout time, indicating that the hydrology of peatlands can change very abruptly and vary considerably even on a local scale. Modelling is however complicated by the poorly known ecology of testate amoebae, which is why a multi-proxy approach is essential to reliably predict the future fate of permafrost peatlands.

  • 3.
    Algesten, Grete
    Umeå universitet, Ekologi och geovetenskap.
    Regulation of carbon dioxide emission from Swedish boreal lakes and the Gulf of Bothnia2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The global carbon cycle is subject to intense research, where sources and sinks for greenhouse gases, carbon dioxide in particular, are estimated for various systems and biomes. Lakes have previously been neglected in carbon balance estimations, but have recently been recognized to be significant net sources of CO2.

    This thesis estimates emission of carbon dioxide (CO2) from boreal lakes and factors regulating the CO2 saturation from field measurements of CO2 concentration along with a number of chemical, biological and physical parameters. Concentration of dissolved organic carbon (DOC) was found to be the most important factor for CO2 saturation in lake water, whereas climatic parameters such as precipitation, temperature and global radiation were less influential. All lakes were supersaturated with and, thus, sources of CO2. Sediment incubation experiments indicated that in-lake mineralization processes during summer stratification mainly occurred in the pelagial. Approximately 10% of the CO2 emitted from the lake surface was produced in epilimnetic sediments.

    The mineralization of DOC and emission of CO2 from freshwaters was calculated on a catchment basis for almost 80,000 lakes and 21 major catchments in Sweden, together with rates of sedimentation in lakes and export of organic carbon to the sea. The total export of terrestrial organic carbon to freshwaters could thereby be estimated and consequently also the importance of lakes for the withdrawal of organic carbon export from terrestrial sources to the sea. Lakes removed 30-80% of imported terrestrial organic carbon, and mineralization and CO2 emission were much more important than sedimentation of carbon. The carbon loss was closely related to water retention time, where catchments with short residence times (<1 year) had low carbon retentions, whereas in catchments with long residence times (>3 years) a majority of the imported TOC was removed in the lake systems.

    The Gulf of Bothnia was also studied in this thesis and found to be a net heterotrophic system, emitting large amounts of CO2 to the atmosphere on an annual basis. The rate of CO2 emission was depending on the balance between primary production and bacterial respiration, and the system was oscillating between being a source and a sink of CO2.

  • 4. Alwmark, Carl
    et al.
    Ormö, Jens
    Nielsen, Arne T.
    Shocked quartz grains in the early Cambrian Vakkejokk Breccia, Sweden—Evidence of a marine impact2019In: Meteoritics and Planetary Science, ISSN 1086-9379, E-ISSN 1945-5100, Vol. 54, no 3, p. 609-620Article in journal (Refereed)
    Abstract [en]

    Here we present a study of the abundance and orientation of planar deformation features (PDFs) in the Vakkejokk Breccia, a proposed lower Cambrian impact ejecta layer in the North-Swedish Caledonides. The presence of PDFs is widely accepted as evidence for shock metamorphism associated with cosmic impact events and their presence confirms that the Vakkejokk Breccia is indeed the result of an impact. The breccia has previously been divided into four lithological subunits (from bottom to top), viz. lower polymict breccia (LPB), graded polymict breccia (GPB), top sandstone (TS), and top conglomerate (TC). Here we show that the LPB contains no shock metamorphic features, indicating that the material derives from just outside of the crater and represents low-shock semi-autochthonous bombarded strata. In the overlying, more fine-grained GPB and TS, quartz grains with PDFs are relatively abundant (2?5% of the grain population), and with higher shock levels in the upper parts, suggesting that they have formed by reworking of more distal ejecta by resurge of water toward the crater in a marine setting. The absence of shocked quartz grains in the TC indicates that this unit represents later slumps associated with weathering and erosion of the protruding crater rim. Sparse shocked quartz grains (<0.2%) were also found in sandstone beds occurring at the same stratigraphic level as the Vakkejokk Breccia 15?20 km from the inferred crater site. It is currently unresolved whether the sandstone at these distal sites is related to the impact or just contains rare reworked quartz grains with PDFs.

  • 5. Andréasson, Per-Gunnar
    et al.
    Allen, Ann
    Aurell, Oskar
    Boman, Daniel
    Ekestubbe, Jonas
    Goerke, Ute
    Lundgren, Anders
    Nilsson, Patrik
    Sandelin, Stefan
    Seve terranes of the Kebnekaise Mts., Swedish Caledonides, and their amalgamation, accretion and affinity2018In: GFF, ISSN 1103-5897, E-ISSN 2000-0863, Vol. 140, no 3, p. 264-291Article in journal (Refereed)
    Abstract [en]

    A major allochthon of the Scandinavian Caledonides, the Seve belt has traditionally been considered to be derived from the rifted margin and continent-ocean transition (COT) of Baltica. However, geochronological results obtained from its inferred northern equivalent, the Kalak Nappe Complex (KNC), have been taken to indicate an exotic affinity of this complex and of also Seve terranes, an interpretation adopted in recent palaeogeographic models. In the Kebnekaise Mts., the COT is represented by the Kebnekaise terrane composed of amphibolitized dykes of gabbro and dolerite of depleted magma source and rare felsic and ultramafic rocks. Coronitic dolerite and gabbro with abundant rutile suggest high pressures before or during amalgamation with the underlying Mårma terrane, composed of quartzofeldspathic gneisses intruded by mafic and granitic rocks, the latter including a previously dated c. 845 Ma-old granite. The granite mingled with mildly alkaline dolerites chemically similar to transitional basalts of continental rifts. Following emplacement at shallow (andalusite stability) crustal levels, the igneous complex and host rocks underwent extensive deformation, metamorphism within the sillimanite-kyanite stability field and local migmatization. The Kebnekaise and Mårma terranes amalgamated in early Ordovician as indicated by the U-Pb age of 487±7 Ma obtained from titanite fabrics of deformed granite in thrust vicinity, and by 40Ar-39Ar results. The pressure increase in both terranes suggests that amalgamation occurred during initial subduction and imbrication. Correlation of the Mårma terrane with the KNC is discussed. Results obtained in this study give no reason to ascribe an exotic affinity to the Seve terranes of the Kebnekaise Mts.

  • 6. Andrén, Thomas
    et al.
    Björck, J
    Johnsen, S
    Correlation of Swedish glacial varves with the Greenland (GRIP) oxygen isotope record1999In: Journal of Quaternary Science, ISSN 0267-8179, E-ISSN 1099-1417, Vol. 14, no 4, p. 361-371Article in journal (Refereed)
    Abstract [en]

    A mean varve thickness curve has been constructed for a part of the Swedish varve chronology from the northwestern Baltic proper. The mean varve thickness curve has been correlated with the delta(18)O record from the GRIP ice-core using the Younger Dryas-Preboreal climate shift. This climate shift was defined by pollen analyses. The Scandinavian ice-sheet responded to a warming at the end of the Younger Dryas, ca. 10 995 to 10 700 clay-varve yr BP. Warming is recorded as a sequence of increasing mean varve thickness and ice-rafted debris suggesting intense calving of the ice front. The Younger Dryas-Preboreal climatic shift is dated to ca. 10 650 clay-varve yr BP, about 40 yr after the final drainage of the Baltic Ice Lake. Both the pollen spectra and a drastic increase in varve thickness reflect this climatic shift. A climate deterioration, correlated with the Preboreal oscillation, is dated to ca. 10 440 to 10 320 clay-varve yr BP and coincides with the brackish water phase of the Yoldia Sea stage. The ages of the climatic oscillations at the Younger Dryas-Preboreal transition show an 875 yr discrepancy compared with the GRIP record, suggesting a large error in the Swedish varve chronology in the part younger than ca. 10 300 clay-varve yr BP.

  • 7.
    Bartels, Pia
    et al.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Ask, Jenny
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Andersson, Agneta
    Umeå universitet, Umeå marina forskningscentrum (UMF).
    Karlsson, Jan
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Giesler, Reiner
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Allochthonous Organic Matter Supports Benthic but Not Pelagic Food Webs in Shallow Coastal Ecosystems2018In: Ecosystems (New York. Print), ISSN 1432-9840, E-ISSN 1435-0629, Vol. 21, no 7, p. 1459-1470Article in journal (Refereed)
    Abstract [en]

    Rivers transport large amounts of allochthonous organic matter (OM) to the ocean every year, but there are still fundamental gaps in how allochthonous OM is processed in the marine environment. Here, we estimated the relative contribution of allochthonous OM (allochthony) to the biomass of benthic and pelagic consumers in a shallow coastal ecosystem in the northern Baltic Sea. We used deuterium as a tracer of allochthony and assessed both temporal variation (monthly from May to August) and spatial variation (within and outside river plume). We found variability in allochthony in space and time and across species, with overall higher values for zoobenthos (26.2 +/- 20.9%) than for zooplankton (0.8 +/- 0.3%). Zooplankton allochthony was highest in May and very low during the other months, likely as a result of high inputs of allochthonous OM during the spring flood that fueled the pelagic food chain for a short period. In contrast, zoobenthos allochthony was only lower in June and remained high during the other months. Allochthony of zoobenthos was generally higher close to the river mouth than outside of the river plume, whereas it did not vary spatially for zooplankton. Last, zoobenthos allochthony was higher in deeper than in shallower areas, indicating that allochthonous OM might be more important when autochthonous resources are limited. Our results suggest that climate change predictions of increasing inputs of allochthonous OM to coastal ecosystems may affect basal energy sources supporting coastal food webs.

    Download full text (pdf)
    FULLTEXT01
  • 8. Bayer, T. K.
    et al.
    Gustafsson, E.
    Brakebusch, M.
    Beer, C.
    Future carbon emission from boreal and permafrost lakes are sensitive to catchment organic carbon loads2019In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 124, no 7, p. 1827-1848Article in journal (Refereed)
    Abstract [en]

    Abstract Carbon storage, processing, and transport in freshwater systems are important components of the global carbon cycle and sensitive to global change. However, in large-scale modeling this part of the boundless carbon cycle is often lacking or represented in a very simplified way. A new process-oriented lake biogeochemical model is used for investigating impacts of changes in atmospheric CO2 concentrations and organic carbon loading from the catchment on future greenhouse gas emissions from lakes across two boreal to subarctic regions (Northern Sweden and Alaska). Aquatic processes represented include carbon, oxygen, phytoplankton, and nutrient dynamics leading to CO2 and CH4 exchanges with the atmosphere. The model is running inside a macroscale hydrological model and may be easily implemented into a land surface scheme. Model evaluation demonstrates the validity in terms of average concentration of nutrients, algal biomass, and organic and inorganic carbon. Cumulative annual emissions of CH4 and CO2, as well as pathways of CH4 emissions, also compare well to observations. Model calculations imply that lake emissions of CH4 may increase by up to 45% under the Representative Concentration Pathway 8.5 scenario until 2100, and CO2 emissions may increase by up to 80% in Alaska. Increasing organic carbon loading to the lakes resulted in a linear response in CO2 and CH4 emissions across both regions, but increases in CO2 emissions from subarctic lakes in Sweden were lower than for southern boreal lakes, probably due to the higher importance of imported vegetation-?generated? inorganic carbon for CO2 emission from subarctic lakes.

  • 9.
    Becher, Marina
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Cryogenic soil processes in a changing climate2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    A considerable part of the global pool of terrestrial carbon is stored in high latitude soils. In these soils, repeated cycles of freezing and thawing creates soil motion (cryoturbation) that in combination with other cryogenic disturbance processes may play a profound role in controlling the carbon balance of the arctic soil. Conditions for cryogenic soil processes are predicted to dramatically change in response to the ongoing climate warming, but little is known how these changes may affect the ability of arctic soils to accumulate carbon. In this thesis, I utilize a patterned ground system, referred to as non-sorted circles, as experimental units and quantify how cryogenic soil processes affect plant communities and carbon fluxes in arctic soils. I show that the cryoturbation has been an important mechanism for transporting carbon downwards in the studied soil over the last millennia. Interestingly, burial of organic material by cryoturbation appears to have mainly occurred during bioclimatic events occurring around A.D. 900-1250 and A.D. 1650-1950 as indicated by inferred 14C ages. Using a novel photogrammetric approach, I estimate that about 0.2-0.8 % of the carbon pool is annually subjected to a net downward transport induced by the physical motion of soil. Even though this flux seems small, it suggests that cryoturbation is an important transporter of carbon over centennial and millennial timescales and contributes to translocate organic matter to deeper soil layers where respiration proceeds at slow rates. Cryogenic processes not only affect the trajectories of the soil carbon, but also generate plant community changes in both species composition and abundance, as indicated by a conducted plant survey on non-sorted circles subjected to variable differential frost heave during the winter. Here, disturbance-tolerant plant species, such as Carex capillaris and Tofieldia pusilla, seem to be favoured by disturbance generated by the differential heave. Comparison with findings from a previous plant survey on the site conducted in the 1980s suggest that the warmer temperatures during the last decades have resulted in decreased differential heave in the studied non-sorted circles. I argue that this change in cryogenic activity has increased abundance of plants present in the 1980s. The fact that the activity and function of the non-sorted circles in Abisko are undergoing changes is further supported by their contemporary carbon dioxide (CO2) fluxes. Here, my measurements of CO2 fluxes suggest that all studied non-sorted circles act as net CO2 sources and thus that the carbon balance of the soils are in a transition state. My results highlight the complex but important relationship between cryogenic soil processes and the carbon balance of arctic soils.

  • 10.
    Becher, Marina
    et al.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Olid, Carolina
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Klaminder, Jonatan
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Buried soil organic inclusions in non-sorted circles fields in northern Sweden: Age and Paleoclimatic context2013In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 118, no 1, p. 104-111Article in journal (Refereed)
    Abstract [en]

    Although burial of surface organic soil horizons into deeper mineral soil layers helps drive the long-term buildup of carbon in arctic soils, when and why buried horizons formed as result of cryoturbation in northern Sweden remain unclear. In this study, we used C-14 and Pb-210 dating to assess when organic matter was buried within non-sorted circles fields near Abisko in northern Sweden. In addition, we used aerial photos from 1959 and 2008 to detect eventual trends in cryogenic activities during this period. We found that organic matter from former organic horizons (stratigraphically intact or partly fragmented) corresponds to three major periods: 0-100 A. D., 900-1250 A. D., and 1650-1950 A. D. The latter two periods were indicated by several dated samples, while the extent of the oldest period is more uncertainty (indicated by only one sample). The aerial photos suggest a net overgrowth by shrub vegetation of previously exposed mineral soil surfaces since 1959. This overgrowth trend was seen in most of the studied fields (92 out of 137 analyzed fields), indicating that the cryogenic activity has mainly decreased in studied non-sorted circles fields since the 1950s. This latter interpretation is also supported by the absence of buried organic layers formed during the last decades. We suggest that the organic matter was buried during the transition from longer cold periods to warmer conditions. We believe these climatic shifts could have triggered regional scale burial of soil organic matter and thus affected how these soils sequestered carbon.

  • 11.
    Becher, Marina
    et al.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Olofsson, Johan
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Klaminder, Jonatan
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Cryogenic disturbance and its impact on carbon fluxes in a subarctic heathland2015In: Environmental Research Letters, ISSN 1748-9326, E-ISSN 1748-9326, Vol. 10, no 11, article id 114006Article in journal (Refereed)
    Abstract [en]

    Differential frost heave, along with the associated cryogenic disturbance that accompanies it, is an almost universal feature of arctic landscapes that potentially influences the fate of the soil carbon (C) stored in arctic soils. In this study, we quantify how gross ecosystem photosynthesis (GEP), soil respiration (Re) and the resulting net ecosystem exchange (NEE) vary in a patterned ground system (non-sorted circles) at plot-scale and whole-patterned ground scales in response to cryogenic disturbances (differential heave and soil surface disruption). We found that: (i) all studied non-sorted circles (n=15) acted as net CO2 sources (positive NEE); (ii) GEP showed a weaker decrease than Re in response to increased cryogenic disturbance/decreased humus cover, indicating that undisturbed humus-covered sites are currently the main source of atmospheric CO2 in the studied system. Interestingly, Re fluxes normalized to C pools indicated that C is currently respired more rapidly at sites exposed to cryogenic disturbances; hence, higher NEE fluxes at less disturbed sites are likely an effect of a more slowly degrading but larger total pool that was built up in the past. Our results highlight the complex effects of cryogenic processes on the C cycle at various time scales. 

  • 12. Belle, Simon
    et al.
    Nilsson, Jenny L.
    Tõnno, Ilmar
    Freiberg, Rene
    Vrede, Tobias
    Goedkoop, Willem
    Climate-induced changes in carbon flows across the plant-consumer interface in a small subarctic lake2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, no 1Article in journal (Refereed)
    Abstract [en]

    Reconstructions of past food web dynamics are necessary for better understanding long-term impacts of climate change on subarctic lakes. We studied elemental and stable isotopic composition of sedimentary organic matter, photosynthetic pigments and carbon stable isotopic composition of Daphnia (Cladocera; Crustacea) resting eggs (δ13CClado) in a sediment record from a small subarctic lake. We examined how regional climate and landscape changes over the last 5800 years affected the relative importance of allochthonous and autochthonous carbon transfer to zooplankton. Overall, δ13CClado values were well in line with the range of theoretical values of aquatic primary producers, confirming that zooplankton consumers in subarctic lakes, even in the long-term perspective, are mainly fuelled by autochthonous primary production. Results also revealed greater incorporations of benthic algae into zooplankton biomass in periods that had a warmer and drier climate and clearer water, whereas a colder and wetter climate and lower water transparency induced higher contributions of planktonic algae to Daphnia biomass. This study thus emphasizes long-term influence of terrestrial-aquatic linkages and in-lake processes on the functioning of subarctic lake food webs.

  • 13. Berggren, Martin
    et al.
    Gudasz, Cristian
    Guillemette, Francois
    Hensgens, Geert
    Ye, Linlin
    Karlsson, Jan
    Systematic microbial production of optically active dissolved organic matter in subarctic lake water2019In: Limnology and Oceanography, ISSN 0024-3590, E-ISSN 1939-5590Article in journal (Refereed)
    Abstract [en]

    The ecology and biogeochemistry of lakes in the subarctic region are particularly sensitive to changes in the abundance and optical properties of dissolved organic matter (DOM). External input of colored DOM to these lakes is an extensively researched topic, but little is known about potential reciprocal feedbacks between the optical properties of DOM and internal microbial processes in the water. We performed 28-day dark laboratory incubation trials on water from 101 subarctic tundra lakes in northern Sweden, measuring the microbial decay of DOM and the resulting dynamics in colored (CDOM) and fluorescent (FDOM) DOM components. While losses in dissolved oxygen during the incubations corresponded to a 20% decrease in mean DOM, conversely the mean CDOM and total FDOM increased by 22% and 30%, respectively. However, the patterns in microbial transformation of the DOM were not the same in all lakes. Notably, along the gradient of increasing ambient CDOM (water brownness), the lakes showed decreased microbial production of protein-like fluorescence, lowered DOM turnover rates and decreasing bacterial growth per unit of DOM. These trends indicate that browning of subarctic lakes systematically change the way that bacteria interact with the ambient DOM pool. Our study underscores that there is no unidirectional causal link between microbial processes and DOM optical properties, but rather reciprocal dependence between the two.

  • 14.
    Bigler, Christian
    et al.
    Umeå universitet, Ekologi och geovetenskap.
    Grahn, E.
    Larocque, I.
    Jeziorski, A.
    Hall, Roland
    Umeå universitet, Ekologi och geovetenskap.
    Holocene environmental change at Lake Njulla (999 m asl), northern Sweden: a comparison with four small nearby lakes along an altitudinal gradient2003In: Journal of Paleolimnology, ISSN 0921-2728, E-ISSN 1573-0417, Vol. 29, no 1, p. 13-29Article in journal (Refereed)
    Abstract [en]

    We assess Holocene environmental change at alpine Lake Njulla (68degrees22'N, 18degrees42'E, 999 m a.s.l.) in northernmost Sweden using sedimentary remains of chironomid head capsules and diatoms. We apply regional calibration sets to quantitatively reconstruct mean July air temperature (using chironomids and diatoms) and lake-water pH (using diatoms). Both chironomids and diatoms infer highest temperatures (1.7-2.3degreesC above present-day estimates, including, a correction for glacio-isostatic land up-lift by 0.6degreesC) during the early Holocene (c. 9,500-8,500 cal. yrs BP). Diatoms suggest a decreasing lake-water pH trend (c. 0.6 pH units) since the early Holocene. Using detrended canonical correspondence analysis (DCCA), we compare the Holocene development of diatom communities in Lake Njulla with four other nearby lakes (Lake 850, Lake Tibetanus, Vuoskkujavri, Vuolep Njakajaure) located along an altitudinal gradient. All five lakes show similar initial DCCA scores after deglaciation, suggesting that similar environmental processes such as high erosion rates and low light availability associated with high summer temperature appear to have regulated the diatom community, favouring high abundances of Fragilaria species. Subsequently, the diatom assemblages develop in a directional manner, but timing and scale of development differ substantially between lakes. This is attributed primarily to differences in the local geology, which is controlling the lake-water pH. Imposed on the basic geological setting, site-specific processes such as vegetation development, climate, hydrological setting and in-lake processes appear to control lake development in northern Sweden.

  • 15. Bjorkman, Anne D.
    et al.
    García Criado, Mariana
    Myers-Smith, Isla H.
    Ravolainen, Virve
    Jónsdóttir, Ingibjörg Svala
    Westergaard, Kristine Bakke
    Lawler, James P.
    Aronsson, Mora
    Bennett, Bruce
    Gardfjell, Hans
    Heiðmarsson, Starri
    Stewart, Laerke
    Normand, Signe
    Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring2020In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 49, no 3, p. 678-692Article in journal (Refereed)
    Abstract [en]

    Changes in Arctic vegetation can have important implications for trophic interactions and ecosystem functioning leading to climate feedbacks. Plot-based vegetation surveys provide detailed insight into vegetation changes at sites around the Arctic and improve our ability to predict the impacts of environmental change on tundra ecosystems. Here, we review studies of changes in plant community composition and phenology from both long-term monitoring and warming experiments in Arctic environments. We find that Arctic plant communities and species are generally sensitive to warming, but trends over a period of time are heterogeneous and complex and do not always mirror expectations based on responses to experimental manipulations. Our findings highlight the need for more geographically widespread, integrated, and comprehensive monitoring efforts that can better resolve the interacting effects of warming and other local and regional ecological factors.

  • 16. Blume-Werry, Gesche
    et al.
    Milbau, Ann
    Teuber, Laurenz M.
    Johansson, Margareta
    Dorrepaal, Ellen
    Dwelling in the deep – strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil2019In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 223, no 3, p. 1328-1339Article in journal (Refereed)
    Abstract [en]

    Summary Climate-warming-induced permafrost thaw exposes large amounts of carbon and nitrogen in soil at considerable depths, below the seasonally thawing active layer. The extent to which plant roots can reach and interact with these hitherto detached, deep carbon and nitrogen stores remains unknown. We aimed to quantify how permafrost thaw affects root dynamics across soil depths and plant functional types compared with above-ground abundance, and potential consequences for plant?soil interactions. A decade of experimental permafrost thaw strongly increased total root length and growth in the active layer, and deep roots invaded the newly thawed permafrost underneath. Root litter input to soil across all depths was 10 times greater with permafrost thaw. Root growth timing was unaffected by experimental permafrost thaw but peaked later in deeper soil, reflecting the seasonally receding thaw front. Deep-rooting species could sequester 15N added at the base of the ambient active layer in October, which was after root growth had ceased. Deep soil organic matter that has long been locked up in permafrost is thus no longer detached from plant processes upon thaw. Whether via nutrient uptake, carbon storage, or rhizosphere priming, plant root interactions with thawing permafrost soils may feed back on our climate both positively and negatively.

  • 17.
    Blume-Werry, Gesche
    et al.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Wilson, Scott D.
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Kreyling, Juergen
    Milbau, Ann
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    The hidden season: growing season is 50% longer below than above ground along an arctic elevation gradient2016In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 209, no 3, p. 978-986Article in journal (Refereed)
    Abstract [en]

    There is compelling evidence from experiments and observations that climate warming prolongs the growing season in arctic regions. Until now, the start, peak, and end of the growing season, which are used to model influences of vegetation on biogeochemical cycles, were commonly quantified using above-ground phenological data. Yet, over 80% of the plant biomass in arctic regions can be below ground, and the timing of root growth affects biogeochemical processes by influencing plant water and nutrient uptake, soil carbon input and microbial activity. We measured timing of above- and below-ground production in three plant communities along an arctic elevation gradient over two growing seasons. Below-ground production peaked later in the season and was more temporally uniform than above-ground production. Most importantly, the growing season continued c. 50% longer below than above ground. Our results strongly suggest that traditional above-ground estimates of phenology in arctic regions, including remotely sensed information, are not as complete a representation of whole-plant production intensity or duration, as studies that include root phenology. We therefore argue for explicit consideration of root phenology in studies of carbon and nutrient cycling, in terrestrial biosphere models, and scenarios of how arctic ecosystems will respond to climate warming.

  • 18.
    Bröder, Lisa
    et al.
    Stockholms universitet, Institutionen för miljövetenskap och analytisk kemi.
    Andersson, August
    Stockholms universitet, Institutionen för miljövetenskap och analytisk kemi.
    Tesi, Tommaso
    Semiletov, Igor
    Gustafsson, Örjan
    Stockholms universitet, Institutionen för miljövetenskap och analytisk kemi.
    Quantifying Degradative Loss of Terrigenous Organic Carbon in Surface Sediments Across the Laptev and East Siberian Sea2019In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 33, no 1, p. 85-99Article in journal (Refereed)
    Abstract [en]

    Ongoing permafrost thaw in the Arctic may remobilize large amounts of old organic matter. Upon transport to the Siberian shelf seas, this material may be degraded and released to the atmosphere, exported off-shelf, or buried in the sediments. While our understanding of the fate of permafrost-derived organic matter in shelf waters is improving, poor constraints remain regarding degradation in sediments. Here we use an extensive data set of organic carbon concentrations and isotopes (n=109) to inventory terrigenous organic carbon (terrOC) in surficial sediments of the Laptev and East Siberian Seas (LS + ESS). Of these similar to 2.7 Tg terrOC about 55% appear resistant to degradation on a millennial timescale. A first-order degradation rate constant of 1.5 kyr(-1) is derived by combining a previously established relationship between water depth and cross-shelf sediment-terrOC transport time with mineral-associated terrOC loadings. This yields a terrOC degradation flux of similar to 1.7Gg/year from surficial sediments during cross-shelf transport, which is orders of magnitude lower than earlier estimates for degradation fluxes of dissolved and particulate terrOC in the water column of the LS + ESS. The difference is mainly due to the low degradation rate constant of sedimentary terrOC, likely caused by a combination of factors: (i) the lower availability of oxygen in the sediments compared to fully oxygenated waters, (ii) the stabilizing role of terrOC-mineral associations, and (iii) the higher proportion of material that is intrinsically recalcitrant due to its chemical/molecular structure in sediments. Sequestration of permafrost-released terrOC in shelf sediments may thereby attenuate the otherwise expected permafrost carbon-climate feedback. Plain language summary Frozen soils in the Arctic contain large amounts of old organic matter. With ongoing climate change this previously freeze-locked carbon storage becomes vulnerable to transport and decay. Upon delivery to the shallow nearshore seas, it may either be directly degraded to carbon dioxide or methane and thereby fuel further warming or get buried and stored in sediments on the sea floor. Our understanding of the fate of carbon released from permafrost soils is increasing, yet uncertainties remain regarding its degradation in the sediment. Here we constrain how much land-derived organic carbon is deposited in the top layer of the sediment (the part that is prone to transport and exposed to oxygen-stimulated degradation) in the Laptev and East Siberian Seas. We find that more than half of this stock likely resists degradation, while the rest decays relatively slowly. Therefore, the amount of carbon released annually from degradation in surface sediments is much smaller than what was found to be emitted from overlying waters in earlier studies. We suspect that this difference is caused by a combination of mechanisms hindering degradation in sediments and thus conclude that the burial of land-derived carbon may help to dampen the climate impact of thawing permafrost.

  • 19. Burke, S. A.
    et al.
    Wik, M.
    Lang, A.
    Contosta, A. R.
    Palace, M.
    Crill, P. M.
    Varner, R. K.
    Long-Term Measurements of Methane Ebullition From Thaw Ponds2019In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 124, no 7, p. 2208-2221Article in journal (Refereed)
    Abstract [en]

    Arctic regions are experiencing rapid warming, leading to permafrost thaw and formation of numerous water bodies. Although small ponds in particular are considered hot spots for methane (CH4) release, long‐term studies of CH4 efflux from these surfaces are rare. We have collected an extensive data set of CH4 ebullition (bubbling) measurements from eight small thaw ponds (<0.001 km2) with different physical and hydrological characteristics over four summer seasons, the longest set of observations from thaw ponds to date. The measured fluxes were highly variable with an average of 20.0 mg CH4 · m−2 · day−1 (median: 4.1 mg CH4 · m−2 · day−1, n = 2,063) which is higher than that of most nearby lakes. The ponds were categorized into four types based on clear and significant differences in bubble flux. We found that the amount of CH4 released as bubbles from ponds was very weakly correlated with environmental variables, like air temperature and atmospheric pressure, and was potentially more related to differences in physical characteristics of the ponds. Using our measured average daily bubble flux plus the available literature, we estimate circumpolar thaw ponds <0.001 km2 in size to emit between 0.2 and 1.0 Tg of CH4 through ebullition. Our findings exemplify the importance of high‐frequency measurements over long study periods in order to adequately capture the variability of these water bodies. Through the expansion of current spatial and temporal monitoring efforts, we can increase our ability to estimate CH4 emissions from permafrost pond ecosystems now and in the future.

  • 20.
    Bäckstrand, Kristina
    Stockholms universitet, Institutionen för geologi och geokemi.
    Carbon gas biogeochemistry of a northern peatland - in a dynamic permafrost landscape2008Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is about biogeochemical processes of a northern peatland and their importance as a link between the climate and the terrestrial system. Increased temperatures on a global level, and particularly in the Arctic, have led to melting permafrost and changes in hydrology. In turn, this affect the natural exchange of radiatively important trace gases between land and atmosphere that may reinforce climate change. The aim of this thesis is to increase the understanding about the exchange of carbon dioxide (CO2), methane (CH4) and non-methane volatile organic compounds (NMVOCs) occurring in northern peatlands, to decrease uncertainty about their future carbon (C) balance. In order to pursue this aim, we designed a study that allowed measuring the C exchange at a subarctic peatland, accounting for spatial and temporal analysis at several levels.

    The field site was the Stordalen mire, northern Sweden. Exchange rates of CO2, and total hydrocarbons (THCs; CH4 and NMVOCs) were measured using an automatic chamber system for up to six years, at three different types of vegetation communities and permafrost regimes. The gas exchange was found to relate to different environmental and biological variables at different vegetation communities and at different temporal scales. Differences in flux rates and controls between sites could be explained with biological and environmental variables in a better way than the seasonal and interannual variability within a site.

    Snow season flux measurements were determined to be of high importance regarding the annual C budget. By excluding the snow season, the potential C source strength of a peatland is likely to be underestimated. The importance of combining the THCs with the CO2 to estimate the annual C balance was demonstrated as THC could be sufficient to shift the mire from a sink to a source of C to the atmosphere. Again, the C source strength may be significantly underestimated if only focusing on CO2 fluxes in wet peatland environments.

  • 21.
    Bäckstrand, Kristina
    et al.
    Stockholms universitet, Institutionen för geologi och geokemi.
    Crill, Patrick, M.
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Jackowicz-Korczyński, Marcin
    Mastepanov, Mikhail
    Christensen, Torben, R.
    Bastviken, David
    Annual carbon gas budget for a subarctic peatland, northern Sweden2010In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 7, no 1, p. 95-108Article in journal (Refereed)
    Abstract [en]

    Temperatures in the Arctic regions are rising, thawing permafrost and exposing previously stable soil organic carbon (OC) to decomposition. This can result in northern latitude soils, which have accumulated large amounts of OC potentially shifting from atmospheric C sinks to C sources with positive feedback on climate warming. In this paper, we estimate the annual net C gas balance (NCB) of the subarctic mire Stordalen, based on automatic chamber measurements of CO2 and total hydrocarbon (THC; CH4 and NMVOCs) exchange. We studied the dominant vegetation communities with different moisture and permafrost characteristics; a dry Palsa underlain by permafrost, an intermediate thaw site with Sphagnum spp. and a wet site with Eriophorum spp. where the soil thaws completely. Whole year accumulated fluxes of CO2 were estimated to 29.7, −35.3 and −34.9 gC m−2 respectively for the Palsa, Sphagnum and Eriophorum sites (positive flux indicates an addition of C to the atmospheric pool). The corresponding annual THC emissions were 0.5, 6.2 and 31.8 gC m−2 for the same sites. Therefore, the NCB for each of the sites was 30.2, −29.1 and −3.1 gC m−2 respectively for the Palsa, Sphagnum and Eriophorum site. On average, the whole mire was a CO2 sink of 2.6 gC m−2 and a THC source of 6.4 gC m−2 over a year. Consequently, the mire was a net source of C to the atmosphere by 3.9 gC m−2 (based on area weighted estimates for each of the three plant communities). Early and late snow season efflux of CO2 and THC emphasize the importance of winter measurements for complete annual C budgets. Decadal vegetation changes at Stordalen indicate that both the productivity and the THC emissions increased between 1970 and 2000. Considering the GWP100 of CH4, the net radiative forcing on climate increased 21% over the same time. In conclusion, reduced C compounds in these environments have high importance for both the annual C balance and climate.

  • 22.
    Bäckstrand, Kristina
    et al.
    Stockholms universitet, Institutionen för geologi och geokemi.
    Crill, Patrick, M.
    Stockholms universitet, Institutionen för geologi och geokemi.
    Mastepanov, Mikhail
    Stockholms universitet, Institutionen för geologi och geokemi.
    Christensen, Torben, R.
    INES, University of Lund.
    Bastviken, David
    Stockholms universitet, Institutionen för geologi och geokemi.
    Nonmethane volatile organic compound flux from a subarctic mire in northern Sweden2008In: Tellus. Series B, Chemical and physical meteorology, ISSN 0280-6509, E-ISSN 1600-0889, Vol. 60, no 2, p. 226-237Article in journal (Refereed)
    Abstract [en]

    Biogenic NMVOCs are mainly formed by plants and microorganisms. They have strong impact on the local atmospheric chemistry when emitted to the atmosphere. The objective of this study was to determine if there are significant emissions of non-methane volatile organic compounds (NMVOCs) from a subarctic mire in northern Sweden. Subarctic peatlands in discontinuous permafrost regions are undergoing substantial environmental changes due to their high sensitivity to climate warming and there is need for includingNMVOCs in the overall carbon budget. Automatic and manual chamber measurements were used to estimateNMVOCfluxes from three dominating subhabitats on the mire during three growing seasons. Emission rates varied and were related to plant species distribution and seasonal net ecosystem exchange of carbon dioxide. The highest fluxes were observed from wetter sites dominated by Eriophorum and Sphagnum spp. Total NMVOC emissions from the mire (∼17 ha) is estimated to consist of ∼150 kgC during a growing season with 150 d. NMVOC fluxes can account for ∼5% of total net carbon exchange (−3177 kgC) at the mire during the same period. NMVOC emissions are therefore a significant component in a local carbon budget for peatlands

  • 23.
    Bäckstrand, Kristina
    et al.
    Stockholms universitet, Institutionen för geologi och geokemi.
    Crill, Patrick, M.
    Stockholms universitet, Institutionen för geologi och geokemi.
    Mastepanov, Mikhail
    GeoBiosphere Science Centre, Physical Geography and Ecosystem Analysis, Lund University.
    Christensen, Torben, R.
    GeoBiosphere Science Centre, Physical Geography and Ecosystem Analysis, Lund University.
    Bastviken, David
    Stockholms universitet, Institutionen för geologi och geokemi.
    Total hydrocarbon flux dynamics at a subarctic mire in northern Sweden2008In: Journal of Geophysical Research – Biogeosciences, Vol. 113, p. G03026-Article in journal (Refereed)
    Abstract [en]

    This is a study of the spatial and temporal variability of total hydrocarbon (THC) emissions from vegetation and soil at a subarctic mire, northern Sweden. THCs include methane (CH4) and nonmethane volatile organic compounds (NMVOCs), both of which are atmospherically important trace gases and constitute a significant proportion of the carbon exchange between biosphere and atmosphere. Reliable characterization of the magnitude and the dynamics of the THC fluxes from high latitude peatlands are important when considering to what extent trace gas emissions from such ecosystems may change and feed back on climate regulation as a result of warmer climate and melting permafrost. High frequency measurements of THC and carbon dioxide (CO2) were conducted during four sequential growing seasons in three localities representing the trophic range of plant communities at the mire. The magnitude of the THC flux followed the moisture gradient with increasing emissions from a dry Palsa site (2.2 ± 0.1 mgC m−2 d−1), to a wet intermediate melt feature with Sphagnum spp. (28 ± 0.3 mgC m−2 d−1) and highest emissions from a wet Eriophorum spp. site (122 ± 1.4 mgC m−2 d−1) (overall mean ±1 SE, n = 2254, 2231 and 2137). At the Palsa site, daytime THC flux was most strongly related to air temperature while daytime THC emissions at the Sphagnum site had a stronger relation to ground temperature. THC emissions at both the wet sites were correlated to net ecosystem exchange of CO2. An overall spatial correlation indicated that areas with highly productive vegetation communities also had high THC emission potential.

  • 24.
    Campeau, Audrey
    Uppsala universitet, Luft-, vatten och landskapslära.
    Carbon in Boreal Streams: Isotopic Tracing of Terrestrial Sources2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The boreal biome comprises vast areas of coniferous forests, dotted with millions of peatlands. Plants harbouring these ecosystems fix CO2 from the atmosphere, which is later incorporated into the vegetation biomass and subsequently buried in soils. Over the course of millennia, this process has led to the formation of a large repository of organic C, currently stored in boreal soils. Streams draining this landscape are typically enriched with carbon dioxide (CO2), methane (CH4) and dissolved organic carbon (DOC). As a consequence, streams tend to emit CO2 and CH4 to the atmosphere, two potent greenhouse gases, and thus contribute positively to radiative climate forcing. The sources fuelling C to boreal streams are not well understood. This thesis aims to unravel these sources, and promote a better consolidation of terrestrial and aquatic C biogeochemical processes. The work is largely based on stable and radiogenic C isotope characterization of various dissolved C forms in stream and groundwater, within contrasting ecosystem types across Sweden.

    This thesis identifies boreal soils as the main source of CO2 in streams. Soil respiration (i.e. biogenic sources) overwhelmingly supply CO2 to streams, leaving only a few exceptions where geogenic CO2 sources were present. An array of biological processes also transform CO2 during its transport from soils to streams. These include; methanogenesis, aquatic DOC mineralization and primary production. The majority of C in boreal streams is sustained by the decomposition of recent photosynthates, with ancient C substrates holding a negligible share of the total C export. While these results suggest that the repository of ancient soil organic C is currently stable, within boreal forests and peatlands, the close connection with recently occurring photosynthesis suggest that forecasted alterations in plant C allocation patterns, driven by climate and land-use changes, will produce a rapid response in stream CO2 emissions. Isotopic characterization of C in stream and groundwater can help reveal these sources and transformation processes, but its interpretation must be made with care.

    Download full text (pdf)
    FULLTEXT01
  • 25. Chang, Kuang -Yu
    et al.
    Riley, William J.
    Crill, Patrick M.
    Grant, Robert F.
    Rich, Virginia I.
    Saleska, Scott R.
    Large carbon cycle sensitivities to climate across a permafrost thaw gradient in subarctic Sweden2019In: The Cryosphere, Vol. 13, no 2, p. 647-663Article in journal (Refereed)
    Abstract [en]

    Permafrost peatlands store large amounts of carbon potentially vulnerable to decomposition. However, the fate of that carbon in a changing climate remains uncertain in models due to complex interactions among hydrological, biogeochemical, microbial, and plant processes. In this study, we estimated effects of climate forcing biases present in global climate reanalysis products on carbon cycle predictions at a thawing permafrost peatland in subarctic Sweden. The analysis was conducted with a comprehensive biogeochemical model (ecosys) across a permafrost thaw gradient encompassing intact permafrost palsa with an ice core and a shallow active layer, partly thawed bog with a deeper active layer and a variable water table, and fen with a water table close to the surface, each with distinct vegetation and microbiota. Using in situ observations to correct local cold and wet biases found in the Global Soil Wetness Project Phase 3 (GSWP3) climate reanalysis forcing, we demonstrate good model performance by comparing predicted and observed carbon dioxide (CO2) and methane (CH4) exchanges, thaw depth, and water table depth. The simulations driven by the bias-corrected climate suggest that the three peatland types currently accumulate carbon from the atmosphere, although the bog and fen sites can have annual positive radiative forcing impacts due to their higher CH4 emissions. Our simulations indicate that projected precipitation increases could accelerate CH4 emissions from the palsa area, even without further degradation of palsa permafrost. The GSWP3 cold and wet biases for this site significantly alter simulation results and lead to erroneous active layer depth (ALD) and carbon budget estimates. Biases in simulated CO2 and CH4 exchanges from biased climate forcing are as large as those among the thaw stages themselves at a landscape scale across the examined permafrost thaw gradient. Future studies should thus not only focus on changes in carbon budget associated with morphological changes in thawing permafrost, but also recognize the effects of climate forcing uncertainty on carbon cycling.

  • 26. Chang, Kuang-Yu
    et al.
    Riley, William J.
    Brodie, Eoin L.
    McCalley, Carmody K.
    Crill, Patrick M.
    Grant, Robert F.
    Methane Production Pathway Regulated Proximally by Substrate Availability and Distally by Temperature in a High-Latitude Mire Complex2019In: Journal of Geophysical Research: Biogeosciences, Vol. 124, no 10, p. 3057-3074Article in journal (Refereed)
    Abstract [en]

    Abstract Projected 21st century changes in high-latitude climate are expected to have significant impacts on permafrost thaw, which could cause substantial increases in emissions to the atmosphere of carbon dioxide (CO2) and methane (CH4, which has a global warming potential 28 times larger than CO2 over a 100-year horizon). However, predicted CH4 emission rates are very uncertain due to difficulties in modeling complex interactions among hydrological, thermal, biogeochemical, and plant processes. Methanogenic production pathways (i.e., acetoclastic [AM] and hydrogenotrophic [HM]) and the magnitude of CH4 emissions may both change as permafrost thaws, but a mechanistic analysis of controls on such shifts in CH4 dynamics is lacking. In this study, we reproduced observed shifts in CH4 emissions and production pathways with a comprehensive biogeochemical model (ecosys) at the Stordalen Mire in subarctic Sweden. Our results demonstrate that soil temperature changes differently affect AM and HM substrate availability, which regulates magnitudes of AM, HM, and thereby net CH4 emissions. We predict very large landscape-scale, vertical, and temporal variations in the modeled HM fraction, highlighting that measurement strategies for metrics that compare CH4 production pathways could benefit from model informed scale of temporal and spatial variance. Finally, our findings suggest that the warming and wetting trends projected in northern peatlands could enhance peatland AM fraction and CH4 emissions even without further permafrost degradation.

  • 27.
    Conrad, Sarah
    et al.
    Luleå University of Technology.
    Ingri, Johan
    Luleå University of Technology.
    Gelting, Johan
    Luleå University of Technology.
    Nordblad, Fredrik
    Luleå University of Technology.
    Engström, Emma
    Luleå University of Technology.
    Rodushkin, Ilia
    ALS Laboratory Group, Luleå.
    Andersson, Per
    Naturhistoriska riksmuseet, Forskningsavdelningen centralt.
    Porcelli, Don
    Oxford University, Oxford.
    Gustafsson, Örjan
    Stockholm University, Stockholm.
    Semiletov, Igor
    University of Alaska, USA.
    Öhlander, Björn
    Luleå University of Technology.
    Distributionof Fe isotopes in particles and colloids in the salinity gradient along theLena River plume, Laptev Sea2019In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 16, p. 1305-1319Article in journal (Refereed)
    Abstract [en]

    Riverine Fe input is the primary Fe source to the ocean. This study is focused on the distribution of Fe along the Lena River freshwater plume in the Laptev Sea using samples from a 600 km long transect in front of the Lena River mouth. Separation of the particulate (>0.22µm), colloidal (0.22µm – 1kDa), and truly dissolved (<1kDa) fractions of Fe was carried out. The total Fe concentrations ranged from 0.15 to 57 µM with Fe dominantly as particulate Fe. The loss of > 99% of particulate Fe and about 90% of the colloidal Fe was observed across the shelf, while the truly dissolved phase was almost constant across the Laptev Sea. Thus, the truly dissolved Fe could be an important source of bioavailable Fe for plankton in the central Arctic Ocean, together with the colloidal Fe. Fe-isotope analysis showed that the particulate phase and the sediment below the Lena River freshwater plume had negative δ56Fe values (relative to IRMM-14). The colloidal Fe phase showed negative δ56Fe values close to the river mouth (about -0.20‰) and positive δ56Fe values in the outermost stations (about +0.10‰).

    We suggest that the shelf zone acts as a sink for Fe particles and colloids with negative δ56Fe values, representing chemically reactive ferrihydrites. While the positive δ56Fe values of the colloidal phase within the outer Lena River freshwater plume, might represent Fe-oxyhydroxides, which remain in the water column, and will be the predominant δ56Fe composition in the Arctic Ocean.

  • 28. Cooper, Claire L.
    et al.
    Swindles, Graeme T.
    Watson, Elizabeth J.
    Savov, Ivan P.
    Gałka, Mariusz
    Gallego-Sala, Angela
    Borken, Werner
    Evaluating tephrochronology in the permafrost peatlands of northern Sweden2019In: Quaternary Geochronology, ISSN 1871-1014, E-ISSN 1878-0350, Vol. 50, p. 16-28Article in journal (Refereed)
    Abstract [en]

    Tephrochronology is an increasingly important tool for the dating of sediment and peat profiles for palaeoecological, palaeoclimatic and archaeological research. However, although much work has been done on tephra in temperate peatlands, there have been very few in-depth investigations of permafrost peatlands. Here we present the analysis of nine peatland cores from Abisko, northern Sweden, and show that the presence of tephra layers may be highly variable even over a scale of <10 km. Using electron probe microanalysis (EPMA) combined with age-depth profiles compiled from radiocarbon (14C) and 210Pb dating of peat records, we identify the Hekla 1104, Hekla 1158, Hekla-Selsund and the Hekla 4 tephra layers. We also infer the presence of the Askja 1875 tephra, in addition to an unassigned tephra dating from between 1971–1987 AD in two separate cores. Five of the nine analysed cores do not contain distinct tephra layers. Volcanic ash deposits in northern Scandinavia are subject to both regional-scale variations in climate and atmospheric circulation, and local-scale variations on the order of tens of kilometres in topography, vegetation, snow cover, and ground permeability. The extreme inconsistency of tephra preservation within a small study area (∼3000 km2) brings into question the reliability of tephrochronology within permafrost peatlands, and highlights the necessity of alternative methods for dating peat profiles in this region.

  • 29.
    Cornelissen, Johannes H C
    et al.
    Vrije Universiteit.
    Van Bodegom, Peter M
    Vrije Universiteit.
    Aerts, Rien
    Vrije Universiteit.
    Callaghan, Terry V
    University of Sheffield.
    Van Logtestijn, Richard S.P.
    Vrije Universiteit.
    Alatalo, Juha
    VINNOVA.
    Chapin, Stuart F.
    University of Alaska.
    Gerdol, Renato G
    Università degli Studi di Ferrara Dipartimento delle Risorse Naturali e Cultural.
    Gudmundsson, Jon
    Agricultural University of Iceland.
    Gwynn-Jones, Dylan
    University of Wales.
    Hartley, Anne E
    Florida International University.
    Hik, David S
    University of Alberta.
    Hofgaard, Annika
    Norwegian Institute for Nature Research.
    Jónsdóttir, Ingibjörg S.
    Agricultural University of Iceland.
    Karlsson, Staffan
    Vetenskapsrådet.
    Klein, Julia A
    Colorado State University.
    Laundre, Jim
    Marine Biological Labratory.
    Magnusson, Borgthor
    Icelandic Institute of Natural History.
    Michelsen, Anders
    University of Copenhagen.
    Molau, Ulf
    Göteborgs Universitet.
    Onipchenko, Vladimir G.
    Moscow State University.
    Quested, Helen M.
    Stockholms Universitet.
    Sandvik, Sylvi M
    Agder University College.
    Schmidt, Inger K.
    Royal Veterinary and Agricultural University Denmark.
    Shaver, Gus R.
    Marine Biological Labratory.
    Solheim, Bjørn S
    University of Tromsø.
    Soudzilovskaia, Nadejda A
    Vrije Universiteit, Moscow State University.
    Stenström, Anna
    Länsstyrelsen Västra Götaland.
    Tolvanen, Anne
    Finnish Forest Research Institute.
    Totland, Ørjan T
    Norwegian University of Life Sciences.
    Wada, Naoya W
    University of Toyama.
    Welker, Jeffrey M
    University of Alaska Anchorage.
    Zhao, Xinquan
    Chinese Academy of Sciences.
    Brancaleoni, Lisa
    Brancaleoni, Laura
    De Beus, Miranda A.H
    Cooper, Elisabeth J.
    Dalen, Linda
    Harte, John
    Hobbie, Sarah E
    Hoefsloot, Gerlof
    Jägerbrand, Annika K
    Göteborg University.
    Jonasson, Sven
    Lee, John A
    Lindblad, Karin
    Melillo, Jerry M
    Neill, Christopher
    Press, Malcolm C
    Rozema, Jelte
    Zielke, Matthias
    Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes2007In: Ecology Letters, ISSN 1461-023X, E-ISSN 1461-0248, Vol. 10, no 7, p. 619-627Article in journal (Refereed)
    Abstract [en]

    Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide.

    Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.

  • 30.
    Danielsson, Sara
    et al.
    Utförare miljöövervakning, Naturhistoriska riksmuseet, NRM.
    Odsjö, Tjelvar
    Utförare miljöövervakning, Naturhistoriska riksmuseet, NRM.
    Bignert, Anders
    Utförare miljöövervakning, Naturhistoriska riksmuseet, NRM.
    Remberger, Mikael
    Utförare miljöövervakning, Naturhistoriska riksmuseet, NRM.
    Organic Contaminants in Moose (Alces alces) and Reindeer (Rangifer tarandus) in Sweden from the past twenty years: Comments Concerning the National Swedish Contaminant Monitoring Programme in Terrestrial Biota2008Report (Other academic)
    Abstract [sv]

    Föreliggande rapport är resultatet av ett uppdrag från Naturvårdsverket (Överenskommelse 221 0730) som syftar till att ta fram en aktuell bild av förekomsten av ett antal pesticider eller ofullständigt kända föroreningar i svensk terrestrisk natur där alltså osäkerhet om ämnenas spridning och ackumulation i landlevande organismvärlden råder. Som matris i detta fall har vävnader och organ av älg och ren från mellersta respektive norra Sverige valts. Matriserna finns tillgängliga i Miljöprovbanken vid Naturhistoriska riksmuseet Valet av ämnen har vägletts av tidigare resultat från övervakningen av föroreningar i svensk natur samt av resultat från screeningundersökningar av ofullständigt kända ämnen som tagits fram i Naturvårdsvekets regi. Listan över analyserade ämnen innehåller enskilda substanser samt närbesläktade substanser tillhörande bl. a. följande grupper: klorbensen, HCBD, oktaklorstyren, PCB, DDT, klordan, HCH, PBDE, dioxiner, furaner, endosulfan, heptaklor, pentaklorfenol och PAH. Från Grimsö i Västmanland har vävnadsprover av årskalvar av älg insamlats till Miljöprovbanken och använts för analys av innehåll av miljögifter i denna studie. Med några få undantag är de provtagna individerna av hankön. Skillnader i halter av kadmium mellan könen har i tidigare studier visat sig icke existera. De utvalda proven av älg representerar perioden 1986-2005. Ett homogenat av muskel har beretts per år under perioden baserat på 10 g av tio individer per år. På samma sätt har prover av ren från sommarbetet S Abisko årligen insamlats i Rensjön NV Kiruna i samband med första höstslakten i mitten av september. Vävnadsprover har tagits av handjur av en ålder mellan 2 och 4 år, mestadels av 3-åriga djur. 1998 uppsköts den ordinarie slakten från första halvan av september till första halvan av november, vilket bör uppmärksammas vid tolkningen av analysresultaten. På samma sätt sköts slakten 2004 fram till mitten av december. Det förhållandet att renen förflyttas avsevärda sträckor under höstvandringen, från sommarbetet i de västra delarna av fjällkedjan till det mellansvenska skogslandet under vintern medför en ändring av föda, vilket kan inverka på exponering och bioackumulation av de studerade substanserna. Ju längre avvikelse från normal slakttid desto längre exponering via lavar som är stapelföda i skogslandet under vintern och som innehåller högre koncentrationer av många ackumulerade ämnen. För den aktuella studien valdes hanrenar av tre års ålder härrörande från Gabna, Lævas and Girjas samebyar vilka bildar ett sammanhängande område i norra Lappland. Provserien omfattar perioden 1987-2006. Ett homogenat per år bereddes baserat på 12 g muskel från tio individer per år. Många av de analyserade ämnena förekommer i koncentrationer under detektionsnivån (LOD) under alla eller de flesta av de undersökta åren (Tabell 2). Halterna funna i älg och ren är i många fall lägre än de nivåer som observerats i fisk från såväl limniska som marina områden. Som exempel har PBDE och HBCD inte ens detekterats i vare sig älg eller ren men finns närvarande i både insjöfisk och havsfisk (Bignert et al 2008). Penta- och hexaklorbensen, oktaklorstyren, polyklorerade bifenyler, - och -hexaklor-cyklohexan och polycykliska aromatiska kolväten förekommer samtliga i halter över LOD under samtliga eller större delen av åren under den undersökta perioden. Koncentrationerna av dessa ämnen har sjunkit med undantag för PAH där koncentrationerna är ungefär desamma under hela perioden. Den genomsnittliga årliga nedgången ligger mellan 3% och 10% med undantag för -HCH som visar den mest uttalade minskningen med 22% i älg och 17% i ren. Dessa resultat är samstämmiga med vad som observerats i biota från insjöar och marina områden i Sverige (Bignert et al. 2008, Bignert 2001). De sjunkande halterna i landanknuten biota under de gångna 20 åren är sannolikt orsakade av regleringar och ansträngningar för att minimera utsläpp av kända persistenta, bioackumulerande och toxiska ämnen till miljön. Ämnen hörande till PAHerna är huvudsakligen oavsiktligt spridda genom ofullständig förbränning av organiska ämnen. Källorna är många och varierande och till följd därav svåra att åtgärda med förbättringar. Detta är troligtvis förklaringen till avsaknaden av nedgående tendens för PAHer. Koncentrationerna av PFCs i både älg och ren var i allmänhet låga. Samtliga analyserade prover hade koncentrationer under LOQ. Närvaro av PFOSA, PFOS och PFOA kunde emellertid detekteras vissa år men inte i nivåer tillräckligt höga för att kvantifieras

    Download full text (pdf)
    FULLTEXT01
  • 31. Denfeld, Blaize A.
    et al.
    Baulch, Helen M.
    del Giorgio, Paul A.
    Hampton, Stephanie E.
    Karlsson, Jan
    A synthesis of carbon dioxide and methane dynamics during the ice-covered period of northern lakes2018In: Limnology and Oceanography Letters, ISSN 2378-2242, Vol. 3, no 3, p. 117-131Article in journal (Refereed)
    Abstract [en]

    The ice-covered period on lakes in the northern hemisphere has often been neglected or assumed to have less importance relative to the open water season. However, recent studies challenge this convention, suggesting that the winter period is more dynamic than previously thought. In this review, we synthesize the current understanding of under-ice carbon dioxide (CO2) and methane (CH4) dynamics, highlighting the annual importance of CO2 and CH4 emissions from lakes at ice-melt. We compiled data from 25 studies that showed that the ice-melt period represents 17% and 27% of the annual CO2 and CH4 emissions, respectively. We also found evidence that the magnitude and type of emission (i.e., CO2 and CH4) varies with characteristics of lakes including geographic location, lake morphometry, and physicochemical conditions. The scarcity of winter and spring carbon data from northern lakes represents a major gap in our understanding of annual budgets in these lakes and calls for future research during this key period.

  • 32. Deng, J.
    et al.
    Li, C.
    Frolking, S.
    Zhang, Y.
    Bäckstrand, Kristina
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Crill, Patrick
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Assessing effects of permafrost thaw on C fluxes based on multiyear modeling across a permafrost thaw gradient at Stordalen, Sweden2014In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 11, no 17, p. 4753-4770Article in journal (Refereed)
    Abstract [en]

    Northern peatlands in permafrost regions contain a large amount of organic carbon (C) in the soil. Climate warming and associated permafrost degradation are expected to have significant impacts on the C balance of these ecosystems, but the magnitude is uncertain. We incorporated a permafrost model, Northern Ecosystem Soil Temperature (NEST), into a biogeochemical model, DeNitrification-DeComposition (DNDC), to model C dynamics in high-latitude peatland ecosystems. The enhanced model was applied to assess effects of permafrost thaw on C fluxes of a subarctic peatland at Stordalen, Sweden. DNDC simulated soil freeze-thaw dynamics, net ecosystem exchange of CO2 (NEE), and CH4 fluxes across three typical land cover types, which represent a gradient in the process of ongoing permafrost thaw at Stordalen. Model results were compared with multiyear field measurements, and the validation indicates that DNDC was able to simulate observed differences in seasonal soil thaw, NEE, and CH4 fluxes across the three land cover types. Consistent with the results from field studies, the modeled C fluxes across the permafrost thaw gradient demonstrate that permafrost thaw and the associated changes in soil hydrology and vegetation not only increase net uptake of C from the atmosphere but also increase the annual to decadal radiative forcing impacts on climate due to increased CH4 emissions. This study indicates the potential of utilizing biogeochemical models, such as DNDC, to predict the soil thermal regime in permafrost areas and to investigate impacts of permafrost thaw on ecosystem C fluxes after incorporating a permafrost component into the model framework.

  • 33. Dinasquet, Julie
    et al.
    Richert, Inga
    Logares, Ramiro
    Yager, Patricia
    Bertilsson, Stefan
    Riemann, Lasse
    Mixing of water masses caused by a drifting iceberg affects bacterial activity, community composition and substrate utilization capability in the Southern Ocean2017In: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 19, no 6, SI, p. 2453-2467Article in journal (Refereed)
    Abstract [en]

    The number of icebergs produced from ice-shelf disintegration has increased over the past decade in Antarctica. These drifting icebergs mix the water column, influence stratification and nutrient condition, and can affect local productivity and food web composition. Data on whether icebergs affect bacterioplankton function and composition are scarce, however. We assessed the influence of iceberg drift on bacterial community composition and on their ability to exploit carbon substrates during summer in the coastal Southern Ocean. An elevated bacterial production and a different community composition were observed in iceberg-influenced waters relative to the undisturbed water column nearby. These major differences were confirmed in short-term incubations with bromodeoxyuridine followed by CARD-FISH. Furthermore, one-week bottle incubations amended with inorganic nutrients and carbon substrates (a mix of substrates, glutamine, Nacetylglucosamine, or pyruvate) revealed contrasting capacity of bacterioplankton to utilize specific carbon substrates in the iceberg-influenced waters compared with the undisturbed site. Our study demonstrates that the hydrographical perturbations introduced by a drifting iceberg can affect activity, composition, and substrate utilization capability of marine bacterioplankton. Consequently, in a context of global warming, increased frequency of drifting icebergs in polar regions holds the potential to affect carbon and nutrient biogeochemistry at local and possibly regional scales.

  • 34. Doguzhaeva, Larisa A
    et al.
    Bengtson, Stefan
    Reguero, Marcelo A
    Mörs, Thomas
    An Eocene orthocone from Antarctica shows convergent evolution of internally shelled cephalopods.2017In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 12, no 3, article id e0172169Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The Subclass Coleoidea (Class Cephalopoda) accommodates the diverse present-day internally shelled cephalopod mollusks (Spirula, Sepia and octopuses, squids, Vampyroteuthis) and also extinct internally shelled cephalopods. Recent Spirula represents a unique coleoid retaining shell structures, a narrow marginal siphuncle and globular protoconch that signify the ancestry of the subclass Coleoidea from the Paleozoic subclass Bactritoidea. This hypothesis has been recently supported by newly recorded diverse bactritoid-like coleoids from the Carboniferous of the USA, but prior to this study no fossil cephalopod indicative of an endochochleate branch with an origin independent from subclass Bactritoidea has been reported.

    METHODOLOGY/PRINCIPAL FINDINGS: Two orthoconic conchs were recovered from the Early Eocene of Seymour Island at the tip of the Antarctic Peninsula, Antarctica. They have loosely mineralized organic-rich chitin-compatible microlaminated shell walls and broadly expanded central siphuncles. The morphological, ultrustructural and chemical data were determined and characterized through comparisons with extant and extinct taxa using Scanning Electron Microscopy/Energy Dispersive Spectrometry (SEM/EDS).

    CONCLUSIONS/SIGNIFICANCE: Our study presents the first evidence for an evolutionary lineage of internally shelled cephalopods with independent origin from Bactritoidea/Coleoidea, indicating convergent evolution with the subclass Coleoidea. A new subclass Paracoleoidea Doguzhaeva n. subcl. is established for accommodation of orthoconic cephalopods with the internal shell associated with a broadly expanded central siphuncle. Antarcticerida Doguzhaeva n. ord., Antarcticeratidae Doguzhaeva n. fam., Antarcticeras nordenskjoeldi Doguzhaeva n. gen., n. sp. are described within the subclass Paracoleoidea. The analysis of organic-rich shell preservation of A. nordenskjoeldi by use of SEM/EDS techniques revealed fossilization of hyposeptal cameral soft tissues. This suggests that a depositional environment favoring soft-tissue preservation was the factor enabling conservation of the weakly mineralized shell of A. nordenskjoeldi.

  • 35. Dörr, N.
    et al.
    Lisker, F.
    Clift, P. D.
    Carter, A.
    Gee, David G.
    Uppsala universitet, Geofysik.
    Tebenkov, A. M.
    Spiegel, C.
    Late Mesozoic-Cenozoic exhumation history of northern Svalbard and its regional significance: Constraints from apatite fission track analysis2012In: Tectonophysics, ISSN 0040-1951, E-ISSN 1879-3266, Vol. 514, p. 81-92Article in journal (Refereed)
    Abstract [en]

    The late Mesozoic-Cenozoic was a time of profound tectonic activity in the Arctic, with incipient spreading in the Arctic Ocean, Baffin Bay-Labrador Sea and North Atlantic, as well as the northward movement of the Greenland microplate leading to collision and deformation in Greenland, Arctic Canada and Svalbard (Eurekan Orogeny). It is, however, still unclear, how northern Svalbard, situated at the northwestern edge of the Barents Shelf, was affected by these processes. Furthermore, northern Svalbard has been proposed to have been a Cretaceous-Cenozoic sediment source to surrounding regions because it lacks a post-Devonian sedimentary cover. When erosion took place and how that related to the tectonic history of the Arctic, is yet unresolved. In order to reconstruct the erosion history of northern Svalbard, we constrained its thermal evolution using apatite fission track (AFT) thermochronology. Our data reveal AFT ages between 62 +/- 5 and 214 +/- 10 Ma, recording late Mesozoic-early Paleogene exhumation. Our data show that northern Svalbard was emergent and experienced erosion from the Early Jurassic and presumably through the Cenozoic, although total exhumation was restricted to similar to 6 km. Pronounced exhumation took place during Jurassic-Cretaceous time, probably linked to the extensional tectonics during the opening of the Amerasian Basin (Arctic Ocean). In contrast, Cenozoic ocean basin formation and the Eurekan deformation did not cause significant erosion of northem Svalbard. Nonetheless, AFT data show that Late Cretaceous-Early Paleocene fault-related exhumation affected some parts of northern Svalbard. Fault zones were reactivated due to the reorganization of Arctic landmasses during an early phase of the Eurekan deformation, which implies that this episode commenced similar to 20 m.y. earlier in Svalbard than previously understood.

  • 36.
    Elbrächter, Malte
    et al.
    Deutsches Zentrum für Marine Diversitätsforschung.
    Gottschling, Marc
    Department of Geosciences, Oslo university.
    Hildebrand-Habel, Tania
    University of Stavanger.
    Keupp, Helmut
    Abisko Scientific Research Station.
    Kohring, Rolf
    Freie Universität Berlin.
    Lewis, Jane
    University of Westminster.
    Meier, Sebastian
    Christian-Albrechts-Universität zu Kiel.
    Montresor, Marina
    Stazione Zoologica ‘A. Dohrn’, Napoli.
    Streng, Michael
    Uppsala universitet, Paleobiologi.
    Versteegh, Gerard
    Universität Hamburg.
    Willems, Helmut
    Universität Bremen.
    Zonneveld, Karin
    Universität Bremen.
    Establishing an Agenda for Calcareous Dinoflagellate Research (Thoracosphaeraceae, Dinophyceae) including a nomenclatural synopsis of generic names2008In: Taxon, ISSN 0040-0262, E-ISSN 1996-8175, Vol. 57, no 4, p. 1289-1303Article in journal (Refereed)
    Abstract [en]

    Calcareous dinoflagellates are considered to be a monophyletic group of peridinoid taxa that have the potential to produce calcified exoskeletal structures during the life cycle, or that derive from such forms. Frequently, these calcareous bodies are excellently preserved in the fossil record and have received increased attention during the past three decades with regard to their use in biostratigraphy, climate and environmental reconstruction. Fossil and extant taxa have been classified in various, partly concurring, systematic concepts, using character complexes of the theca, cyst wall ultrastructure and archaeopyle/operculum morphology. The significance of such character complexes is briefly discussed in the light of molecular data that have been accumulated during the past decade. Over the years, the number of published taxonomic names has increased, partly due to nomenclatural changes. We propose that the entirety of calcareous dinoflagellates, and non-calcareous relatives derived from them, is accommodated in a single family of the order Peridiniales, the Thoracosphaeraceae, combining the former segregated taxonomic units Calciodinelloideae, a subfamily within Peridiniaceae, and Thoracosphaerales, a separate dinoflagellate order. As a result of a meeting of calcareous dinoflagellate specialists, we outline major subjects that are in need of re-investigation and -evaluation (an Agenda for Calcareous Dinoflagellate Research). In order to contribute to a consistent and stable nomenclature and taxonomy of calcareous dinoflagellates, we list 97 published generic names assigned to known calcareous dinoflagellates in a nomenclatural synopsis, with species names indicating their types and information on type locality and stratigraphy. We evaluate the status of these names—whether validly published and, if so, whether legitimate—,a crucial first step for any revisionary work in the future.

  • 37. ENGELBRECHT, Andrea
    et al.
    Mörs, Thomas
    Naturhistoriska riksmuseet, Enheten för paleobiologi.
    REGUERO, Marcelo
    KRIWET, Jürgen
    Revision of Eocene Antarctic carpet sharks (Elasmobranchii, Orectolobiformes) from Seymour Island, Antarctic Peninsula2016In: Journal of Systematic Palaeontology, ISSN 1477-2019, E-ISSN 1478-0941Article in journal (Refereed)
  • 38.
    Erickson, Lance
    Gustavus Adolphus College.
    Mercury Dynamics In Sub-Arctic Lake Sediments Across A Methane Ebullition Gradient2014Independent thesis Basic level (degree of Bachelor)Student thesis
  • 39.
    Ericsson, Göran
    et al.
    SLU, Umeå.
    Larsson, Thomas B
    Umeå universitet, Institutionen för idé- och samhällsstudier.
    Rosqvist, Gunhild
    Stockholms universitet.
    Jonasson, Christer
    Polarforskningssekretariatet.
    Älgen flyr när klimatet ändras2011In: Miljötrender, ISSN 1403-4743, no 4, p. 12-13Article in journal (Other academic)
  • 40.
    Ericsson, Göran
    et al.
    SLU, Umeå.
    Larsson, Thomas B
    Umeå universitet, Institutionen för idé- och samhällsstudier.
    Rosqvist, Gunhild
    Stockholms universitet.
    Jonasson, Christer
    Polarforskningssekretariatet.
    Älgen flyr när klimatet ändras2011In: Miljötrender, ISSN 1403-4743, no 4, p. 12-13Article in journal (Other academic)
  • 41.
    Eriksson, Bert
    Uppsala universitet, Kulturgeografiska institutionen.
    The zoo-geomorphological impact of fossorial rodents in sub-polar alpine environments2011Licentiate thesis, monograph (Other academic)
    Abstract [en]

    The geomorphological impact of small fossorial mammals (adapted to digging and living underground), such as rodents can be significant, and both their direct and indirect effects may contribute to landscape formation. This thesis is based on empirical field studies of two burrowing rodent species in sub-polar environments, namely invasive House mice (Mus musculus) on sub-Antarctic Marion Island and Norwegian lemmings (Lemmus lemmus) in sub-Arctic Abisko. The spatial distribution, sediment displacements, impact on vegetation and microclimatic effects of the rodents are documented.

    Invasive mice and rats, introduced on sub-Antarctic Islands during the 19th century, lack natural enemies and are shown to have a significant direct and indirect geomorphic impact by direct sediment displacement, vegetation removal by burrowing, grazing and trampling and thereby exposing the sediments for rain, wind and frost processes.  The geomorphic impacts of lemmings are comparatively more limited as they rely on natural hollows and snow cover for protection and do not burrow to the same extent as other fossorial rodents in cold regions. Lemmings are thus suggested to have little impact on landform integrity, but can affect vegetation composition.

    A comparison of the findings from this study with published data on seven other rodent species and other physical mass transfer mechanisms in sub-polar and alpine environments suggests that fossorial rodents are a significant and sometimes dominant geomorphic force in sub-polar and alpine environments. The geomorphic work by ground squirrels, ice rats, plateau pikas and zokors is shown to be in the same order of magnitude as solifluction and rock falls. In alpine and periglacial environments these rodents are considered to act as key-stone species and ecosystem engineers through the creation of landforms by  dislocation and of soil and other impacts on soil properties, vegetation and ecosystem function

  • 42. Fahnestock, M. F.
    et al.
    Bryce, J. G.
    McCalley, C. K.
    Montesdeoca, M.
    Bai, S.
    Li, Y.
    Driscoll, C. T.
    Crill, P. M.
    Rich, V. I.
    Varner, R. K.
    Mercury reallocation in thawing subarctic peatlands2019In: Geochemical Perspectives Letters, ISSN 2410-339X, Vol. 11, p. 33-38Article in journal (Refereed)
    Abstract [en]

    Warming Arctic temperatures have led to permafrost thaw that threatens to release previously sequestered mercury (Hg) back into the environment. Mobilisation of Hg in permafrost waters is of concern, as Hg methylation produced under water-saturated conditions results in the neurotoxin, methyl Hg (MeHg). Thawing permafrost may enhance Hg export, but the magnitude and mechanisms of this mobilisation within Arctic ecosystems remain poorly understood. Such uncertainty limits prognostic modelling of Hg mobilisation and impedes a comprehensive assessment of its threat to Arctic ecosystems and peoples. Here, we address this knowledge gap through an assessment of Hg dynamics across a well-studied permafrost thaw sequence at the peak of the growing season in biologically active peat overlying permafrost, quantifying total gaseous mercury (TGM) fluxes, total mercury (HgTot) in the active layer peat, porewater MeHg concentrations, and identifying microbes with the potential to methylate Hg. During the initial thaw, TGM is liberated, likely by photoreduction from permafrost where it was previously stored for decades to centuries. As thawing proceeds, TGM is largely driven by hydrologic changes as evidenced by Hg accumulation in water-logged, organic-rich peat sediments in fen sites. MeHg in porewaters increase across the thaw gradient, a pattern coincident with increases in the relative abundance of microbes possibly containing genes allowing for methylation of ionic Hg. Findings suggest that under changing climate, frozen, well-drained habitats will thaw and collapse into saturated landscapes, increasing the production of MeHg and providing a significant source of the toxic, bioaccumulative contaminant.

  • 43. Finderup Nielsen, Tora
    et al.
    Ravn, Nynne Rand
    Michelsen, Anders
    Increased CO2 efflux due to long-term experimental summer warming and litter input in subarctic tundra – CO2 fluxes at snowmelt, in growing season, fall and winter2019In: Plant and Soil, ISSN 0032-079X, E-ISSN 1573-5036, Vol. 444, no 1, p. 365-382Article in journal (Refereed)
    Abstract [en]

    Soils of northern latitude tundra ecosystems have accumulated large amounts of carbon that might be released as CO2 when temperature rises and the tree-line moves north. We aim to investigate the potential CO2 flux changes at a subarctic tundra heath under changing climate. We measured daytime ecosystem respiration and photosynthesis at a subarctic heath over a full year under ambient conditions and in factorial long-term (13 years) increased summer temperature and leaf litter addition plots, and in additional short-term (2 years) summer warming plots. Under ambient conditions the ecosystem was a daytime sink of CO2 in the five warmest months, but a net daytime source in the cold season. Thirteen years of summer warming by 1 °C at soil surface increased CO2 emissions, as daytime respiration increased by 37% and photosynthesis by 29% over the year. Short-term warming likewise increased fluxes. Litter addition also increased the emission of CO2 as ecosystem respiration rose by 21% but photosynthesis remained unchanged. Both warming and litter addition significantly enhanced the amount of green biomass. This study suggests that in a changed climate subarctic ecosystems will act as a positive feedback source of atmospheric CO2. It shows the significance of CO2 fluxes outside the growing season and demonstrates a cold-season long- but not short-term legacy effect of increased summer warming on CO2 emission.

  • 44.
    Fredin, Ola
    Stockholms universitet, Institutionen för naturgeografi och kvartärgeologi (INK).
    Mountain centered icefields in northern Scandinavia2004Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Mountain centered glaciers have played a major role throughout the last three million years in the Scandinavian mountains. The climatic extremes, like the present warm interglacial or cold glacial maxima, are very short-lived compared to the periods of intermediate climate conditions, characterized by the persistence of mountain based glaciers and ice fields of regional size. These have persisted in the Scandinavian mountains for about 65% of the Quaternary. Mountain based glaciers thus had a profound impact on large-scale geomorphology, which is manifested in large-scale glacial landforms such as fjords, glacial lakes and U-shaped valleys in and close to the mountain range.

    Through a mapping of glacial landforms in the northern Scandinavian mountain range, in particular a striking set of lateral moraines, this thesis offers new insights into Weichselian stages predating the last glacial maximum. The aerial photograph mapping and field evidence yield evidence that these lateral moraines were overridden by glacier ice subsequent to their formation. The lateral moraines were dated using terrestrial cosmogenic nuclide techniques. Although the terrestrial cosmogenic nuclide signature of the moraines is inconclusive, an early Weichselian age is tentatively suggested through correlations with other landforms and stratigraphical archives in the region. The abundance and coherent spatial pattern of the lateral moraines also allow a spatial reconstruction of this ice field. The ice field was controlled by topography and had nunataks protruding also where it was thickest close to the elevation axis of the Scandinavian mountain range. Outlet glaciers discharged into the Norwegian fjords and major valleys in Sweden.

    The process by which mountain based glaciers grow into an ice sheet is a matter of debate. In this thesis, a feedback mechanism between debris on the ice surface and ice sheet growth is presented. In essence, the growth of glaciers and ice sheets may be accelerated by an abundance of debris in their ablation areas. This may occur when the debris cover on the glacier surface inhibits ablation, effectively increasing the glaciers mass balance. It is thus possible that a dirty ablation area may cause the glacier to advance further than a clean glacier under similar conditions. An ice free period of significant length allows soil production through weathering, frost shattering, and slope processes. As glaciers advance through this assemblage of sediments, significant amounts of debris end up on the surface due to both mass wastage and subglacial entrainment. Evidence that this chain of events may occur, is given by large expanses of hummocky moraine (local name Veiki moraine) in the northern Swedish lowlands. Because the Veiki moraine has been correlated with the first Weichselian advance following the Eemian, it implies a heavily debris charged ice sheet emanating from the mountain range and terminating in a stagnant fashion in the lowlands.

  • 45.
    Förster, Johannes
    Umeå universitet, Institutionen för ekologi, miljö och geovetenskap.
    Metabolic balance and CO2 saturation in a subarctic permafrost lake2005Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
  • 46. Ghirardo, Andrea
    et al.
    Lindstein, Frida
    Koch, Kerstin
    Buegger, Franz
    Schloter, Michael
    Albert, Andreas
    Michelsen, Anders
    Winkler, J. Barbro
    Schnitzler, Jörg-Peter
    Rinnan, Riikka
    Origin of volatile organic compound emissions from subarctic tundra under global warming2020In: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486Article in journal (Refereed)
    Abstract [en]

    Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature‐dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13CO2‐labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil–plant–atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%–44% (Salix) and 60%–68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%–58% (Salix) and 87%–95% (Betula). Analyses of above‐ and belowground 12/13C showed shifts of C allocation in the plant–soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.

  • 47. Giesler, Reiner
    et al.
    Lyon, Steve W.
    Stockholms universitet, Institutionen för naturgeografi.
    Mörth, Carl-Magnus
    Stockholms universitet, Institutionen för geologiska vetenskaper.
    Karlsson, Jan
    Karlsson, E. M.
    Jantze, Elin J.
    Stockholms universitet, Institutionen för naturgeografi.
    Destouni, Georgia
    Stockholms universitet, Institutionen för naturgeografi.
    Humborg, Christoph
    Stockholms universitet, Institutionen för tillämpad miljövetenskap (ITM).
    Catchment-scale dissolved carbon concentrations and exportestimates across six subarctic streams in northern Sweden2014In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 11, p. 525-537Article in journal (Refereed)
    Abstract [en]

    Climatic change is currently enhancing permafrostthawing and the flow of water through the landscape in subarcticand arctic catchments, with major consequences forthe carbon export to aquatic ecosystems. We studied streamwater carbon export in several tundra-dominated catchmentsin northern Sweden. There were clear seasonal differencesin both dissolved organic carbon (DOC) and dissolved inorganiccarbon (DIC) concentrations. The highest DOC concentrationsoccurred during the spring freshet while the highestDIC concentrations were always observed during winterbaseflow conditions for the six catchments considered in thisstudy. Long-term trends for the period 1982 to 2010 for oneof the streams showed that DIC concentrations has increasedby 9% during the 28 yr of measurement while no clear trendwas found for DOC. Similar increasing trends were alsofound for conductivity, Ca and Mg. When trends were discretizedinto individual months, we found a significant linearincrease in DIC concentrations with time for September,November and December. In these subarctic catchments, theannual mass of C exported as DIC was in the same orderof magnitude as DOC; the average proportion of DIC to thetotal dissolved C exported was 61% for the six streams. Furthermore,there was a direct relationship between total runoffand annual dissolved carbon fluxes for these six catchments.These relationships were more prevalent for annual DIC exportsthan annual DOC exports in this region. Our results alsohighlight that both DOC and DIC can be important in highlatitudeecosystems. This is particularly relevant in environmentswhere thawing permafrost and changes to subsurfaceice due to global warming can influence stream water fluxesof C. The large proportion of stream water DIC flux also hasimplications on regional C budgets and needs to be consideredin order to understand climate-induced feedback mechanismsacross the landscape.

  • 48. Goth, Astrid
    et al.
    Michelsen, Anders
    Rousk, Kathrin
    Railroad derived nitrogen and heavy metal pollution does not affect nitrogen fixation associated with mosses and lichens at a tundra site in Northern Sweden2019In: Environmental Pollution, ISSN 0269-7491, E-ISSN 1873-6424, Vol. 247, p. 857-865Article in journal (Refereed)
    Abstract [en]

    Traffic derived nitrogen (N) and heavy metal pollution is a well-known phenomenon, but little explored in otherwise pristine ecosystems such as subarctic tundra. Here, the main source of N input to the ecosystem is via N2 fixation by moss- and lichen-associated bacteria. While inhibitory effects of N deposition on moss-associated N2 fixation have been reported, we still lack understanding of the effects of traffic derived N and heavy metal deposition on this ecosystem function in an otherwise pristine setting. To test this, we established a distance gradient (0–1280 m) away from a metal pollution source -a railway transporting iron ore that passes through a subarctic birch forest. We assessed the effects of railway-derived pollution on N2 fixation associated with two moss species Pleurozium schreberi, Hylocomium splendens and with the lichen Peltigera aphthosa. Deposition and availability of N and heavy metals (Fe, Cu, Zn, Pb) as well as the respective contents in moss, lichen and soil was assessed. While we found a steep gradient in metal concentration in moss, lichen and soil with distance away from the pollution source, N deposition did not change, and with that, we could not detect a distance gradient in moss- or lichen-associated N2 fixation. Hence, our results indicate that N2 fixing bacteria are either not inhibited by heavy metal deposition, or that they are protected within the moss carpet and lichen tissue.

  • 49.
    Granath, Gustaf
    et al.
    Uppsala universitet, Växtekologi och evolution.
    Rydin, Håkan
    Uppsala universitet, Växtekologi och evolution.
    Baltzer, Jennifer L.
    Biology Department, Wilfrid Laurier University, Waterloo, Canada.
    Bengtsson, Fia
    Uppsala universitet, Växtekologi och evolution.
    Boncek, Nicholas
    Department of Biological Sciences, Union College, Schenectady, NY, USA.
    Bragazza, Luca
    Department of Life Science and Biotechnologies, University of Ferrara, Ferrara, Italy; Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Lausanne, Station 2, Lausanne, Switzerland; Ecole Polytechnique Fédérale de Lausanne EPFL, School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of ecological systems ECOS, Station 2, Lausanne, Switzerland.
    Bu, Zhao-Jun
    Institute for Peat and Mire Research, Northeast Normal University, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, China.
    Caporn, Simon J. M.
    School of Science and the Environment, Division of Biology and Conservation Ecology, Manchester Metropolitan University, Manchester, UK.
    Dorrepaal, Ellen
    Climate Impacts Research Centre, Dept. of Ecology and Environmental Science, Umeå University, Abisko, Sweden.
    Galanina, Olga
    Institute of Earth Sciences, St. Petersburg State University, St. Petersburg, Russia; Komarov Botanical Institute Russian Academy of Sciences, St. Petersburg, Russia.
    Galka, Mariusz
    Laboratory of Wetland Ecology and Monitoring & Department of Biogeography and Paleoecology, Adam Mickiewicz University in Poznan, Poznan, Polen.
    Ganeva, Anna
    Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria.
    Gillikin, David P.
    Department of Geology, Union College, Schenectady, NY, USA.
    Goia, Irina
    Babe ̧s-Bolyai University, Faculty of Biology and Geology, Department of Taxonomy and Ecology, Cluj Napoca, Romania.
    Goncharova, Nadezhda
    Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Science, Syktyvkar, Russia.
    Hajek, Michal
    Masaryk Univ, Fac Sci, Dept Bot & Zool, Brno, Czech Republic.
    Haraguchi, Akira
    Univ Kitakyushu, Dept Biol, Kitakyushu, Fukuoka, Japan.
    Harris, Lorna I.
    McGill Univ, Dept Geog, Montreal, Canada.
    Humphreys, Elyn
    Carleton Univ, Dept Geog & Environm Studies, Ottawa, Canada.
    Jirousek, Martin
    Masaryk Univ, Fac Sci, Dept Bot & Zool, Brno, Czech Republic; Mendel Univ Brno, Fac AgriSci, Dept Plant Biol, Brno, Czech Republic.
    Kajukalo, Katarzyna
    Adam Mickiewicz Univ, Lab Wetland Ecol & Monitoring, Poznan, Poland; Adam Mickiewicz Univ, Dept Biogeog & Paleoecol, Poznan, Poland.
    Karofeld, Edgar
    Univ Tartu, Inst Ecol & Earth Sci, Tartu, Estonia.
    Koronatova, Natalia G.
    Russian Acad Sci, Siberian Branch, Inst Soil Sci & Agrochem, Lab Biogeocenol, Novosibirsk, Russia.
    Kosykh, Natalia P.
    Russian Acad Sci, Siberian Branch, Inst Soil Sci & Agrochem, Lab Biogeocenol, Novosibirsk, Russia.
    Lamentowicz, Mariusz
    Adam Mickiewicz Univ, Lab Wetland Ecol & Monitoring, Poznan, Poland; Adam Mickiewicz Univ, Dept Biogeog & Paleoecol, Poznan, Poland.
    Lapshina, Elena
    Yugra State Univ, Khanty Mansiysk, Russia.
    Limpens, Juul
    Wageningen Univ, Plant Ecol & Nat Conservat Grp, Wageningen, Netherlands.
    Linkosalmi, Maiju
    Finnish Meteorol Inst, Helsinki, Finland.
    Ma, Jin-Ze
    Northeast Normal Univ, State Environm Protect Key Lab Wetland Ecol & Veg, Inst Peat & Mire Res, Changchun, Jilin, Peoples R China; Jilin Prov Key Lab Wetland Ecol Proc & Environm C, Changchun, Jilin, Peoples R China.
    Mauritz, Marguerite
    No Arizona Univ, Dept Biol Sci, Ctr Ecosyst Sci & Soc Ecoss, Flagstaff, USA.
    Munir, Tariq M.
    Univ Calgary, Dept Geog, Calgary, Canada; St Marys Univ, Dept Geol, Calgary, Canada.
    Natali, Susan M.
    Woods Hole Res Ctr, Falmouth, USA.
    Natcheva, Rayna
    Bulgarian Acad Sci, Inst Biodivers & Ecosyst Res, Sofia, Bulgaria.
    Noskova, Maria
    Russian Acad Sci, Komarov Bot Inst, St Petersburg, Russia.
    Payne, Richard J.
    Univ York, Environm, York, N Yorkshire, England; Penza State Univ, Penza, Russia.
    Pilkington, Kyle
    Union Coll, Dept Biol Sci, Schenectady, NY USA.
    Robinson, Sean
    SUNY Coll Oneonta, Dept Biol, Oneonta, NY USA.
    Robroek, Bjorn J. M.
    Univ Southampton, Biol Sci, Southampton, Hants, England.
    Rochefort, Line
    Laval Univ, Dept Plant Sci, Quebec City, PQ, Canada; Laval Univ, Ctr Northern Studies, Quebec City, PQ, Canada.
    Singer, David
    Univ Neuchatel, Inst Biol, Lab Soil Biodivers, Neuchatel, Switzerland; Univ Sao Paulo, Inst Biosci, Dept Zool, Sao Paulo, Brazil.
    Stenoien, Hans K.
    Norwegian Univ Sci & Technol, NTNU Univ Museum, Trondheim, Norway.
    Tuittila, Eeva-Stiina
    Univ Eastern Finland, Sch Forest Sci, Peatland & Soil Ecol Grp, Joensuu, Finland.
    Vellak, Kai
    Univ Tartu, Inst Ecol & Earth Sci, Tartu, Estonia.
    Verheyden, Anouk
    Union Coll, Dept Geol, Schenectady, NY USA.
    Waddington, James Michael
    McMaster Univ, Sch Geog & Earth Sci, Hamilton, Canada.
    Rice, Steven K.
    Union Coll, Dept Biol Sci, Schenectady, NY USA.
    Environmental and taxonomic controls of carbon and oxygen stable isotope composition in Sphagnum across broad climatic and geographic ranges2018In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 15, no 16, p. 5189-5202Article in journal (Refereed)
    Abstract [en]

    Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on nutrients, water and CO2 uptake from the atmosphere. As the isotopic composition of carbon (C-12(,)13) and oxygen (O-16(,)18) of these Sphagnum mosses are affected by environmental conditions, Sphagnum tissue accumulated in peat constitutes a potential long-term archive that can be used for climate reconstruction. However, there is inadequate understanding of how isotope values are influenced by environmental conditions, which restricts their current use as environmental and palaeoenvironmental indicators. Here we tested (i) to what extent C and O isotopic variation in living tissue of Sphagnum is speciesspecific and associated with local hydrological gradients, climatic gradients (evapotranspiration, temperature, precipitation) and elevation; (ii) whether the C isotopic signature can be a proxy for net primary productivity (NPP) of Sphagnum; and (iii) to what extent Sphagnum tissue delta O-18 tracks the delta O-18 isotope signature of precipitation. In total, we analysed 337 samples from 93 sites across North America and Eurasia us ing two important peat-forming Sphagnum species (S. magellanicum, S. fuscum) common to the Holarctic realm. There were differences in delta C-13 values between species. For S. magellanicum delta C-13 decreased with increasing height above the water table (HWT, R-2 = 17 %) and was positively correlated to productivity (R-2 = 7 %). Together these two variables explained 46 % of the between-site variation in delta C-13 values. For S. fuscum, productivity was the only significant predictor of delta C-13 but had low explanatory power (total R-2 = 6 %). For delta O-18 values, approximately 90 % of the variation was found between sites. Globally modelled annual delta O-18 values in precipitation explained 69 % of the between-site variation in tissue delta O-18. S. magellanicum showed lower delta O-18 enrichment than S. fuscum (-0.83 %0 lower). Elevation and climatic variables were weak predictors of tissue delta O-18 values after controlling for delta O-18 values of the precipitation. To summarize, our study provides evidence for (a) good predictability of tissue delta O-18 values from modelled annual delta O-18 values in precipitation, and (b) the possibility of relating tissue delta C-13 values to HWT and NPP, but this appears to be species-dependent. These results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.

    Download full text (pdf)
    FULLTEXT01
  • 50.
    Grudd, Håkan
    Stockholms universitet, Institutionen för naturgeografi och kvartärgeologi (INK).
    Tree Rings as Sensitive Proxies of Past Climate Change2006Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In the boreal forests of the Northern Hemisphere, time series of tree-ring width (TRW) and maximum density in the latewood (MXD) are highly correlated to local instrumental summer-temperature data and are thus widely used as proxies in high-resolution climate reconstructions. Hence, much of our present knowledge about climatic variability in the last millennium is based on tree-rings. However, many tree-ring records have a lack of data in the most recent decades, which severely hampers our ability to place the recent temperature increase in a longer-timescale perspective of natural variability.

    The main objective of this thesis is to update and extend the Torneträsk TRW and MXD records in northern Sweden. Local instrumental climate-data is used to calibrate the new tree-ring records. The results show that TRW is mainly forced by temperature in the early growing season (June/July) while MXD has a wider response window (June – August) and has a higher correlation to temperature. Two reconstructions of summer temperature are made for (i) the last 7,400 years based on TRW, and (ii) the last 1,500 years based on a combination of TRW and MXD. The reconstructions show natural variability on timescales from years to several centuries. The 20th century does not stand out as a notably warm period in the long timescale perspective. A medieval period from AD 900 – 1100 is markedly warmer than the 20th century.

    The environmental impact from a large explosive volcanic eruption in 1628/1627 BC is analysed in the tree rings of 14C-dated bog pines in south-central Sweden and in absolutely-dated subfossil pines from Torneträsk. The results show evidence of an impact in the southern site at approximately this time but no detectable impact in the North.

    Subfossil trees of Fitzroya cupressoides in southern Chile were 14C-dated to approx. 50,000 years BP and amalgamated into a 1,229-year TRW chronology. This tree-ring record is the oldest in the world. The variability in this Last-glacial chronology is similar to the variability in present-day living trees of the same species. These results suggest that the growth–forcing mechanisms 50,000 years ago were similar to those at present.

1234 1 - 50 of 164
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf