Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermal dependence of cardiac function in arctic fish: implications of a warming world
Responsible organisation
2013 (English)In: Journal of Experimental Biology, ISSN 0022-0949, E-ISSN 1477-9145, Vol. 216, no 22, 4251-4255 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

With the Arctic experiencing one of the greatest and most rapid increases in sea temperatures in modern time, predicting how Arctic marine organisms will respond to elevated temperatures has become crucial for conservation biology. Here, we examined the thermal sensitivity of cardiorespiratory performance for three closely related species of sculpins that inhabit the Arctic waters, two of which, Gymnocanthus tricuspis and Myoxocephalus scorpioides, have adapted to a restricted range within the Arctic, whereas the third species, Myoxocephalus scorpius, has a wider distribution. We tested the hypothesis that the fish restricted to Arctic cold waters would show reduced cardiorespiratory scope in response to an increase in temperature, as compared with the more eurythermal M. scorpius. As expected from their biogeography, M. scorpioides and G. tricuspis maximised cardiorespiratory performance at temperatures between 1 and 4 degrees C, whereas M. scorpius maximised performance over a wider range of temperatures (1-10 degrees C). Furthermore, factorial scope for cardiac output collapsed at elevated temperature for the two high-latitude species, negatively impacting their ability to support aerobically driven metabolic processes. Consequently, these results concurred with our hypothesis, suggesting that the sculpin species restricted to the Arctic are likely to be negatively impacted by increases in ocean temperatures.

Place, publisher, year, edition, pages
2013. Vol. 216, no 22, 4251-4255 p.
Keyword [en]
cardiovascular; scope; temperature; conservation physiology
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-2892DOI: 10.1242/jeb.087130OAI: oai:DiVA.org:polar-2892DiVA: diva2:954484
Available from: 2016-08-22 Created: 2016-08-22 Last updated: 2016-08-22

Open Access in DiVA

No full text

Other links

Publisher's full text
In the same journal
Journal of Experimental Biology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf