System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Organic-N loss by efflux and burial associated with a low efflux of inorganic-N and with nitrate assimilation in Arctic sediments (Svalbard)
Responsible organisation
1996 (English)In: Mar. Ecol. Prog. Series, no 141, p. 283-293Article in journal (Refereed)
Abstract [en]
Sediments were sampled at water depths from 170 to 2577 m at 17 stations adjacent to Svalbard. In general, with increasing water depth there was decreasing NH4+ with increasing NO3- in the sediment pore water, increasing depth of O2 penetration, decreasing NH4+- and increasing NO3--efflux rates, decreasing nitrification and denitrification rates, and decreasing rates of organic nitrogen burial. Most sediments had insignificant rates of nitrogen mineralisation (0 to 0.34 mmol m-2 d-1); there was a very high C:N ratio (mean 68) in the measured efflux products. Efflux and consumption rates of NO3-, calculated from pore water profiles, were generally higher than the measured rates, but these calculated rates also predicted high C:N mineralisation ratios. The high ratios demanded that the particulate organic substrate must also have had a low nitrogen content. The high measured efflux of dissolved organic nitrogen (mean 0.93 mmol m-2 d-1) from the sediment suggested that fresh detritus (C:N 13) might reach the sediment surface, and be hydrolysed with efflux loss of dissolved nitrogen-rich organic matter (e.g. C:N 6) and with subsequent mineralisation (C:N ~68) or burial (C:N ~10) of the transformed material. High C:N ratios in the products of sediment mineralisation are commonly reported, indicating the prevalence of preferential nitrogen loss from detritus in the water column and probably also at the sediment-water interface. The retention of nitrogen by the sediment can explain the discrepancy between measured and calculated NO3- fluxes: NO3- did not escape from the sediment to the water because it was assimilated by bacteria utilising high C:N substrate. It is likely that some NO3- which diffused downward was also assimilated rather than denitrified. Many of these sediments had a sub-surface zone of NH4+ production associated with nitrification. Above and below this zone of net production were zones of NH4+ and NO3- disappearance.
Place, publisher, year, edition, pages
1996. no 141, p. 283-293
Keywords [en]
sediments, EPOS II, SEAS, Arctic, Svalbard, Nitrate, Ammonium, DON, Assimilation, C:N, Nitrification, Denitrification, Burial
Identifiers
URN: urn:nbn:se:polar:diva-223DOI: 10.3354/meps141283 ISBN: Print ISSN:0171-8630; online ISSN:1616-1599 (print)OAI: oai:DiVA.org:polar-223DiVA, id: diva2:568354
Note

Source: Polardok by Swedish Polar Research Secretariat

Available from: 2012-11-15 Created: 2012-11-15 Last updated: 2012-11-15

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 126 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf