Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Self-expansion full information optimization strategy: Convenient and efficient method for near infrared spectrum auto-analysis
Show others and affiliations
Responsible organisation
2023 (English)In: Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy, ISSN 1386-1425, E-ISSN 1873-3557, Vol. 303Article in journal (Refereed) Published
Abstract [en]

An essential step in the application of near infrared spectroscopy technology is the spectrum preprocessing. A reasonable implementation of it ensures that the effective spectral information is correctly extracted and, also that the model's accuracy is increased. However, some analysts' research still uses the manual approach of trial and error, particularly those less skilled ones. Previous papers have provided preprocessing optimization algorithms for NIR, but there are still some problems that need to be resolved, such as the unwieldy sequence determination of preprocessing method or, the fluctuated optimization outcomes or, lack of sufficient statistical information. This research suggests a spectrum auto-analysis methodology named self-expansion full information optimization strategy, a new powerful open-source technique for concurrently addressing all of these above issues simultaneously. For the first time in the field of chemometrics, this algorithm offers a reliable and effective automatic near infrared auto-modelling method based on the statistical informatics. With the aid of its built-in modules, such as information generators, spectrum processors, etc., it is able to fully search the common preprocessing techniques, which is determined by Monte Carlo cross validation. Then the final ensemble calibration model is built by employing the optimized preprocessing schemes, along with the wavelength variables screening algorithm. The optimization strategy can offer the user objective useful statistics information created throughout the modeling process to further examine the model's effectiveness. The results demonstrate that the suggested method can easily and successfully extract spectrum information and develop calibration models by putting it to the test on two groups of actual near-infrared spectral data. Additionally, this optimization strategy can also be applied to other spectrum analysis areas, such Raman spectroscopy or infrared spectroscopy, by changing a few of its parameters, and has extraordinary application value.

Place, publisher, year, edition, pages
2023. Vol. 303
Keywords [en]
Preprocessing method, Auto-optimization strategy, Near infrared spectra, Ensemble model, Open source
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-9064DOI: 10.1016/j.saa.2023.123224OAI: oai:DiVA.org:polar-9064DiVA, id: diva2:1820842
Available from: 2023-12-19 Created: 2023-12-19 Last updated: 2023-12-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://www.sciencedirect.com/science/article/pii/S1386142523009095
In the same journal
Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf