Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Simulating glacier mass balance and its contribution to runoff in Northern Sweden
Show others and affiliations
Responsible organisation
2023 (English)In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 620Article in journal (Refereed) Published
Abstract [en]

Glaciers are one of the main sources of freshwater in cold regions. The glacier melting process can significantly impact the glacier mass balance (GMB) and contribute a large amount of runoff in cold regions. This study applied the recently developed semi-distributed glacio-hydrological conceptual model (FLEXG) to understand the glacier melting process and the effect of topography on GMB in the Torne River basin, northern Sweden. The study simulated glacier and snow accumulation and ablation, as well as runoff from the glacier and non-glacier areas of the basin using the FLEXG model for the time period 1989–2018. The FLEXG model considers the influence of topography on runoff generation, and in this study the basin was classified into 143 zones depending on elevation and aspect. In order to gain a comprehensive view of the performance of the FLEXG model, the classical lumped hydrological model HBV was used and compared with the FLEXG model in simulating total streamflow and peak runoff at the outlet of the basin. Our results revealed that the FLEXG model performed well in reproducing the streamflow (also better than the HBV model) with metric Kling-Gupta Efficiency (KGE) of 0.80 and 0.71 for the calibration and validation periods, respectively. We also found that the FLEXG model performs better in peak runoff simulation than the HBV model. The FLEXG simulated snow cover area proportion agreed well with the MODIS satellite snow cover product (R2 = 0.60 and RMSE = 28%). The GMB in different elevation zones was simulated, and a downward trend was found for GMB changes during the study period because of climate change.

Place, publisher, year, edition, pages
2023. Vol. 620
Keywords [en]
Arctic region, Catchment hydrology, Glacier hydrology, Hydrological model, Runoff simulation, Satellite data
National Category
Physical Geography
Identifiers
URN: urn:nbn:se:polar:diva-9055DOI: 10.1016/j.jhydrol.2023.129404OAI: oai:DiVA.org:polar-9055DiVA, id: diva2:1820830
Available from: 2023-12-18 Created: 2023-12-18 Last updated: 2023-12-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://www.sciencedirect.com/science/article/pii/S0022169423003463
In the same journal
Journal of Hydrology
Physical Geography

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 108 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf