Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Canopy Structure and Air Temperature Inversions Impact Simulation of Sub-Canopy Longwave Radiation in Snow-Covered Boreal Forests
Show others and affiliations
Responsible organisation
2023 (English)In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 128, no 14Article in journal (Refereed) Published
Abstract [en]

Longwave radiation is often the dominant source of energy for snowmelt in forests. Measurements at forest sites of varying density in Sweden and Finland show that downwelling longwave radiation is enhanced under forest canopies, even for sparse canopies and particularly for clear skies. Canopy density must be estimated accurately to predict this enhancement. Linear regression with above-canopy longwave radiation and air temperature as predictors of sub-canopy radiation gives good predictions of sub-canopy longwave radiation with weightings for transmission through canopy gaps that are close to measured sky view fractions. Air temperature serves here as a proxy for effective canopy radiative temperature. Adding above-canopy shortwave radiation as a predictor gives little improvement in the predictions, suggesting that daytime heating of trunks above the air temperature (“hot trees”) has limited influence on longwave radiation under these continuous canopies. The influence of canopy temperatures falling below the above-canopy air temperature (“cold trees”) on calm, clear nights, however, is apparent. Decoupling of canopy and above-canopy air temperatures in an energy balance model of the type used in large-scale land surface modeling allows this cooling.

Place, publisher, year, edition, pages
John Wiley & Sons, Ltd , 2023. Vol. 128, no 14
Keywords [en]
snow, longwave radiation, forests
National Category
Physical Geography
Identifiers
URN: urn:nbn:se:polar:diva-9023DOI: 10.1029/2022JD037980OAI: oai:DiVA.org:polar-9023DiVA, id: diva2:1820204
Available from: 2023-12-17 Created: 2023-12-17 Last updated: 2023-12-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1029/2022JD037980
In the same journal
Journal of Geophysical Research - Atmospheres
Physical Geography

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 53 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf