Climate warming and shrubification will affect soil carbon (C) cycling in arctic ecosystems. Rhizosphere inputs from increased plant productivity by shrubification may stimulate the mineralization of old soil organic matter (SOM), termed the “priming effect”. However, increased soil nitrogen (N) availability due to warming-accelerated mineralization, and litter inputs associated with shrubification could modulate this response. In this study, we investigated how N-availability affects the priming of SOM mineralization in subarctic soils by adding labile organic matter (OM) including 13C-glucose with and without mineral N, or 13C-alanine, into soils with different N availabilities resulting from inorganic N and/or litter addition field-treatments. Rather than as a single pulse addition, labile OM additions were administered semi-continuously every other day to simulate rhizosphere conditions. We found that semi-continuous additions of labile OM induced a sustained priming of SOM mineralization, and this was linked to a sustained stimulation of bacterial and fungal growth over time, despite a reduced microbial growth efficiency. The priming of soil N mineralization was higher than the priming of soil C mineralization, indicating a selective microbial N-mining that was particularly pronounced in more N-poor soils. However, microbial N-mining showed a declining trend over time, suggesting a shift from the most N-rich compounds to less N-rich compounds, presumably as reservoirs were exhausted. The priming effect controlled by N-mining was associated with a stimulation of bacterial and fungal growth depending on the form of labile OM: Alanine induced higher priming of soil C mineralization by stimulating bacterial growth, while glucose induced lower priming of soil C mineralization by stimulating fungal growth. These results indicate that bacteria and fungi can both drive the priming of SOM mineralization in subarctic soils. Based on microbial biomass and growth rates, it could be estimated that over 90% of the observed priming of both soil C and N mineralization were due to changes in turnover of “old” SOM rather than of the microbial biomass pool (i.e. “real” rather than “apparent” priming). Overall, our findings suggest that increased rhizosphere inputs could increase soil N availability by enhanced microbial N-mining, generating a positive feedback to plant productivity in the subarctic. In contrast, increased soil N availability could reduce soil C release through alleviated microbial demand for N.