Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Holocene melting of the West Antarctic Ice Sheet driven by tropical Pacific warming
Show others and affiliations
Responsible organisation
2022 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 13, no 1Article in journal (Refereed) Published
Abstract [en]

The primary Antarctic contribution to modern sea-level rise is glacial discharge from the Amundsen Sea sector of the West Antarctic Ice Sheet. The main processes responsible for ice mass loss include: (1) ocean-driven melting of ice shelves by upwelling of warm water onto the continental shelf; and (2) atmospheric-driven surface melting of glaciers along the Antarctic coast. Understanding the relative influence of these processes on glacial stability is imperative to predicting sea-level rise. Employing a beryllium isotope-based reconstruction of ice-shelf history, we demonstrate that glaciers flowing into the Amundsen Sea Embayment underwent melting and retreat between 9 and 6 thousand years ago. Despite warm ocean water influence, this melting event was mainly forced by atmospheric circulation changes over continental West Antarctica, linked via a Rossby wave train to tropical Pacific Ocean warming. This millennial-scale glacial history may be used to validate contemporary ice-sheet models and improve sea-level projections.

Place, publisher, year, edition, pages
2022. Vol. 13, no 1
National Category
Natural Sciences
Research subject
SWEDARP 2009/10, Oden Southern Ocean 2009/10
Identifiers
URN: urn:nbn:se:polar:diva-8959DOI: 10.1038/s41467-022-30076-2OAI: oai:DiVA.org:polar-8959DiVA, id: diva2:1724582
Available from: 2023-01-09 Created: 2023-01-09 Last updated: 2025-06-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
In the same journal
Nature Communications
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 121 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf