Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Do Arctic mixed-phase clouds sometimes dissipate due to insufficient aerosol?: Evidence from comparisons between observations and idealized simulations
Show others and affiliations
Responsible organisation
2022 (English)In: Atmospheric Chemistry and Physics, Vol. 22, no 13, p. 8973-8988Article in journal (Refereed) Published
Abstract [en]

Mixed-phase clouds are ubiquitous in the Arctic. These clouds can persist for days and dissipate in a matter of hours. It is sometimes unknown what causes this sudden dissipation, but aerosol–cloud interactions may be involved. Arctic aerosol concentrations can be low enough to affect cloud formation and structure, and it has been hypothesized that, in some instances, concentrations can drop below some critical value needed to maintain a cloud.

We use observations from a Department of Energy ARM site on the northern slope of Alaska at Oliktok Point (OLI), the Arctic Summer Cloud Ocean Study (ASCOS) field campaign in the high Arctic Ocean, and the Integrated Characterisation of Energy, Clouds, Atmospheric state, and Precipitation at Summit – Aerosol Cloud Experiment (ICECAPS-ACE) project at the NSF (National Science Foundation) Summit Station in Greenland (SMT) to identify one case per site where Arctic boundary layer clouds dissipated coincidentally with a decrease in surface aerosol concentrations. These cases are used to initialize idealized large eddy simulations (LESs) in which aerosol concentrations are held constant until, at a specified time, all aerosols are removed instantaneously – effectively creating an extreme case of aerosol-limited dissipation which represents the fastest a cloud could possibly dissipate via this process. These LESs are compared against the observed data to determine whether cases could, potentially, be dissipating due to insufficient aerosol. The OLI case's observed liquid water path (LWP) dissipated faster than its simulation, indicating that other processes are likely the primary drivers of the dissipation. The ASCOS and SMT observed LWP dissipated at similar rates to their respective simulations, suggesting that aerosol-limited dissipation may be occurring in these instances.

We also find that the microphysical response to this extreme aerosol forcing depends greatly on the specific case being simulated. Cases with drizzling liquid layers are simulated to dissipate by accelerating precipitation when aerosol is removed while the case with a non-drizzling liquid layer dissipates quickly, possibly glaciating via the Wegener–Bergeron–Findeisen (WBF) process. The non-drizzling case is also more sensitive to ice-nucleating particle (INP) concentrations than the drizzling cases. Overall, the simulations suggest that aerosol-limited cloud dissipation in the Arctic is plausible and that there are at least two microphysical pathways by which aerosol-limited dissipation can occur.

Place, publisher, year, edition, pages
2022. Vol. 22, no 13, p. 8973-8988
National Category
Earth and Related Environmental Sciences
Research subject
SWEDARCTIC 2008, ASCOS
Identifiers
URN: urn:nbn:se:polar:diva-8958DOI: 10.5194/acp-22-8973-2022OAI: oai:DiVA.org:polar-8958DiVA, id: diva2:1724573
Available from: 2023-01-09 Created: 2023-01-09 Last updated: 2023-01-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://acp.copernicus.org/articles/22/8973/2022/
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 21 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf