Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Application of Single-Particle ICP-MS to Determine the Mass Distribution and Number Concentrations of Environmental Nanoparticles and Colloids
Show others and affiliations
Responsible organisation
2021 (English)In: Environmental Science & Technology Letters, Vol. 8, no 7, p. 589-595Article in journal (Refereed) Published
Abstract [en]

Analyzing the elemental compositions and size distributions of nanoparticles, colloids, and their aggregates in environmental samples represents a key task in understanding contaminant, substrate, and nutrient cycling. Single-particle ICP-MS (spICP-MS) is a high-throughput method that is capable of providing the elemental mass of thousands of particles within minutes. The challenge, however, lies in data analysis and interpretation, especially for complex environmental samples. Here we present successful applications of spICP-MS for environmental samples. We first analyzed the homoaggregation behavior of synthetic microplastic and magnetite (abiogenic and biogenic) nanoparticles. The measured distribution of aggregate mass was described as a function of the number of primary particles/aggregate (Npp). In tandem with dynamic light scattering data, differences in aggregates’ compactness (primary particles per nanometer) between samples can be determined. Second, we showed how sequential elemental analysis allows evaluation of the mobility of a toxic arsenic metalloid and its inferred association with colloidal Fe(III) (oxyhydr)oxides. Finally, we investigated the composition of heterogeneous iron–carbon-rich colloidal flocs, highlighting distinct colloidal Fe and C distributions and C/Fe ratios between samples from different permafrost thawing stages. On the basis of our results, we provide guidelines for successful sample preparation and promising future spICP-MS opportunities and applications with environmental samples.

Place, publisher, year, edition, pages
American Chemical Society , 2021. Vol. 8, no 7, p. 589-595
Keywords [en]
Aggregation, Colloidal particles, Colloids, Magnetite, Nanoparticles
National Category
Environmental Sciences
Identifiers
URN: urn:nbn:se:polar:diva-8917DOI: 10.1021/acs.estlett.1c00314OAI: oai:DiVA.org:polar-8917DiVA, id: diva2:1715945
Available from: 2022-12-04 Created: 2022-12-04 Last updated: 2022-12-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1021/acs.estlett.1c00314
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 88 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf