Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Looking back to the future—micro- and nanoplankton diversity in the Greenland Sea
Responsible organisation
2021 (English)In: Marine Biodiversity, ISSN 1867-1616, E-ISSN 1867-1624, Vol. 51, no 4Article in journal (Refereed) Published
Abstract [en]

Anthropogenic perturbations and climate change are severely threatening habitats of the global ocean, especially in the Arctic region, which is affected faster than any other ecosystem. Despite its importance and prevailing threats, knowledge on changes in its micro- and nanoplanktonic diversity is still highly limited. Here, we look back almost two decades (May 1–26, 2002) in order to expand the limited but necessary baseline for comparative field observations. Using light microscopy, a total of 196 species (taxa) were observed in 46 stations across 9 transects in the Greenland Sea. Although the number of observed species per sample ranged from 12 to 68, the diversity as effective species numbers (based on Shannon index) varied from 1.0 to 8.8, leaving about 88% as rare species, which is an important factor for the resilience of an ecosystem. Interestingly, the station with the overall highest species number had among the lowest effective species numbers. During the field survey, both number of rare species and species diversity increased with decreasing latitude. In the southern part of the examined region, we observed indications of an under-ice bloom with a chlorophyll a value of 9.9 μg l−1 together with a nitrate concentration < 0.1 μM. Further, we recorded non-native species including the Pacific diatom Neodenticula seminae and the fish-kill associated diatom Leptocylindrus minimus. Our comprehensive dataset of micro- and nanoplanktonic diversity can be used for comparisons with more recent observations and continuous monitoring of this vulnerable environment—to learn from the past when looking towards the future.

Place, publisher, year, edition, pages
2021. Vol. 51, no 4
National Category
Natural Sciences
Research subject
SWEDARCTIC 2002, Arctic Ocean 2002
Identifiers
URN: urn:nbn:se:polar:diva-8853DOI: 10.1007/s12526-021-01204-wOAI: oai:DiVA.org:polar-8853DiVA, id: diva2:1628870
Available from: 2022-01-17 Created: 2022-01-17 Last updated: 2022-01-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
In the same journal
Marine Biodiversity
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf