VLF radio propagation recordings are used to determine the characteristics of the nighttime polar lower D region of the ionosphere. Recordings of both VLF phase and amplitude in the Arctic on days within ∼1–2 weeks of the equinoxes enable their day-to-night changes to be determined. These changes are then combined with previously measured daytime polar D region characteristics to find the nighttime characteristics. The previously determined daytime characteristics were measured in the Arctic summer; the NRLMSISE atmosphere model is used to help determine the height change from daytime summer to daytime equinox (∼5 km lower). The principal path used was from the 16.4 kHz Norwegian transmitter JXN (67°N, 14°E) 1,334 km northwards across the Arctic Ocean to Ny-Ålesund (79°N, 12°E), Svalbard. Also used were the 2,014-km path from NRK (37.5 kHz, Grindavik, 64°N, Iceland) to Ny-Ålesund, the 1,655-km path from JXN to Reykjavik (64°N, Iceland), and the 5,302-km path from JXN across the Arctic Ocean to Fairbanks (65°N) in Alaska. The night values of (the Wait parameters) H′ and β were found to average from ∼79 km at equinox down to 77 km near winter solstice (lower than the 85 km at low and midlatitudes by ∼7 km) and 0.6 km−1, respectively. This lower height and its variability are shown to be consistent with the principal source of ionization being energetic electron precipitation.