Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dynamics of recent landslides (<20 My) on Mars: Insights from high-resolution topography on Earth and Mars and numerical modelling
Show others and affiliations
Responsible organisation
2021 (English)In: Planetary and Space Science, ISSN 0032-0633, E-ISSN 1873-5088, Vol. 206Article in journal (Refereed) Published
Abstract [en]

Landslides are common features found on steep slopes on Mars and the role of water in their formation is an open question. Our study focuses on three young martian landslides whose mechanism of formation is unknown and knowing their formation mechanism could give us key information on recent martian climate and/or tectonics. They are less than 5 ​km long, and formed during the Late Amazonian Epoch, with an age <20 ​Ma when Mars is thought to have had a hyperarid climate. To better understand the dynamics and formation mechanism of these landslides, we combine two approaches: geomorphic comparison between martian and terrestrial landslides using remote sensing data from the High Resolution Imaging Science Experiment (HiRISE) and the Colour and Stereo Surface Imaging System (CaSSIS), and numerical modelling using a dry granular flow dynamical model. Our geomorphic analysis revealed two contrasting morphologies suggesting differing dynamics and formation mechanisms. Two of the three martian landslides resemble terrestrial rockslides, while the third is more akin to terrestrial mudslides. The numerical modelling, although not fully conclusive, broadly supports our interpretations from the morphological observations. We suggest that the two landslides resembling terrestrial rockslides could have been triggered by shaking by meteorite impact or marsquakes in the absence of water. On the contrary, we suggest liquid water (originating from ground-ice melted by geothermal heat flux) may have been involved in the initiation of the landslide resembling a terrestrial mudslide. Our results show the value of using morphological comparison between martian and terrestrial landslides combined with numerical modelling to inform the hypotheses of landslide-formation on Mars where in situ analysis is not usually possible.

Place, publisher, year, edition, pages
2021. Vol. 206
Keywords [en]
Geomorphology, Digital elevation model, Landslides, Modelling, SHALTOP
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:polar:diva-8786DOI: 10.1016/j.pss.2021.105303OAI: oai:DiVA.org:polar-8786DiVA, id: diva2:1625071
Available from: 2022-01-05 Created: 2022-01-05 Last updated: 2022-01-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://www.sciencedirect.com/science/article/pii/S0032063321001422
In the same journal
Planetary and Space Science
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 57 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf