Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Declining fungal diversity in Arctic freshwaters along a permafrost thaw gradient
Show others and affiliations
Responsible organisation
2021 (English)In: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 27, no 22, p. 5889-5906Article in journal (Refereed) Published
Abstract [en]

Climate change–driven permafrost thaw has a strong influence on pan-Arctic regions, via, for example, the formation of thermokarst ponds. These ponds are hotspots of microbial carbon cycling and greenhouse gas production, and efforts have been put on disentangling the role of bacteria and archaea in recycling the increasing amounts of carbon arriving to the ponds from degrading watersheds. However, despite the well-established role of fungi in carbon cycling in the terrestrial environments, the interactions between permafrost thaw and fungal communities in Arctic freshwaters have remained unknown. We integrated data from 60 ponds in Arctic hydro-ecosystems, representing a gradient of permafrost integrity and spanning over five regions, namely Alaska, Greenland, Canada, Sweden, and Western Siberia. The results revealed that differences in pH and organic matter quality and availability were linked to distinct fungal community compositions and that a large fraction of the community represented unknown fungal phyla. Results display a 16%–19% decrease in fungal diversity, assessed by beta diversity, across ponds in landscapes with more degraded permafrost. At the same time, sites with similar carbon quality shared more species, aligning a shift in species composition with the quality and availability of terrestrial dissolved organic matter. We demonstrate that the degradation of permafrost has a strong negative impact on aquatic fungal diversity, likely via interactions with the carbon pool released from ancient deposits. This is expected to have implications for carbon cycling and climate feedback loops in the rapidly warming Arctic.

Place, publisher, year, edition, pages
John Wiley & Sons, Ltd , 2021. Vol. 27, no 22, p. 5889-5906
Keywords [en]
aquatic fungi, Arctic, dissolved organic matter, fungal diversity, permafrost thaw, thermokarst ponds
National Category
Biological Sciences Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:polar:diva-8783DOI: 10.1111/gcb.15852OAI: oai:DiVA.org:polar-8783DiVA, id: diva2:1625050
Available from: 2022-01-05 Created: 2022-01-05 Last updated: 2022-01-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1111/gcb.15852
In the same journal
Global Change Biology
Biological SciencesEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 72 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf