Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Role of Methane Transport From the Active Layer in Sustaining Methane Emissions and Food Chains in Subarctic Ponds
2021 (English)In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 126, no 3, article id e2020JG005810Article in journal (Refereed) Published
Abstract [en]

Groundwater discharge from the seasonally thawed active layer is increasingly recognized as an important pathway for delivering methane (CH4) into Arctic lakes and streams, but its contribution to CH4 emissions from thaw ponds and its influence on the trophic support and nutritional quality of pond food chains remains unexplored. We quantified the transport of CH4 from the active layer through groundwater discharge into thaw ponds in a subarctic catchment in northern Sweden, using radon (222Rn) as groundwater tracer. We analyzed stable isotopes and fatty acids of pond macroinvertebrates to evaluate the potential effects of groundwater-mediated CH4 inputs on the aquatic food chains. Our results indicate that active layer groundwater discharge flows are nontrivial (range 6%–46% of pond volume per day) and the associated CH4 fluxes (median 339 mg C m−2day−1, interquartile range [IQR]: 179–419 mg C m−2 day−1) can sustain the diffusive CH4 emissions from most of the ponds (155 mg C m−2 day−1, IQR: 55–234 mg C m−2 day−1). Consumers in ponds receiving greater CH4 inputs from the active layer had lower stable carbon (C) isotope signatures that indicates a greater trophic reliance on methane oxidizing bacteria (MOB), and they had lower nutritional quality as indicated by their lower tissue concentrations of polyunsaturated fatty acids. Overall, this work links physical (CH4 transport from the active layer), biogeochemical (CH4 emission), and ecological (MOB-consumer interaction) processes to provide direct evidence for the role of active layer groundwater discharge in CH4 cycling of subarctic thaw ponds.

Place, publisher, year, edition, pages
John Wiley & Sons, Ltd , 2021. Vol. 126, no 3, article id e2020JG005810
Keywords [en]
climate change, groundwater, methane, methane-oxidizing bacteria, ponds, trophic chain
National Category
Environmental Sciences Oceanography, Hydrology and Water Resources Climate Research
Identifiers
URN: urn:nbn:se:polar:diva-8745DOI: 10.1029/2020JG005810OAI: oai:DiVA.org:polar-8745DiVA, id: diva2:1581364
Available from: 2021-07-19 Created: 2021-07-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020JG005810
In the same journal
Journal of Geophysical Research - Biogeosciences
Environmental SciencesOceanography, Hydrology and Water ResourcesClimate Research

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 75 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf