Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Increased Above- and Belowground Plant Input Can Both Trigger Microbial Nitrogen Mining in Subarctic Tundra Soils
Show others and affiliations
Responsible organisation
2021 (English)In: Ecosystems (New York. Print), ISSN 1432-9840, E-ISSN 1435-0629Article in journal (Refereed) Published
Abstract [en]

Low nitrogen (N) availability in the Arctic and Subarctic constrains plant productivity, resulting in low litter inputs to soil. Increased N availability and litter inputs as a result of climate change, therefore, have the potential to impact the functioning of these ecosystems. We examined plant and microbial responses to chronic inorganic N (5 g m−2 year−1) and/or litter (90 g m−2 year−1), supplied during three growing seasons. We also compared the response to more extreme additions, where the total cumulative additions of N (that is, 15 g m−2) and litter (that is, 270 g m−2) were concentrated into a single growth season. Plant productivity was stimulated by N additions and was higher in the extreme addition plots than those with chronic annual additions. Microbial community structure also differed between the chronic and extreme plots, and there was a significant relationship between plant and microbial community structures. Despite differences in microbial structure, the field treatments had no effect on microbial growth or soil C mineralization. However, gross N mineralization was higher in the N addition plots. This led to a lower ratio of soil C mineralization to gross N mineralization, indicating microbial targeting of N-rich organic matter (“microbial N-mining”), likely driven by the increased belowground C-inputs due to stimulated plant productivity. Surprisingly, aboveground litter addition also decreased ratio of soil C mineralization to gross N mineralization. Together, these results suggest that elevated N availability will induce strong responses in tundra ecosystems by promoting plant productivity, driving changes in above- and belowground community structures, and accelerating gross N mineralization. In contrast, increased litter inputs will have subtle effects, primarily altering the ratio between C and N derived from soil organic matter.

Place, publisher, year, edition, pages
2021.
National Category
Ecology
Identifiers
URN: urn:nbn:se:polar:diva-8738DOI: 10.1007/s10021-021-00642-8OAI: oai:DiVA.org:polar-8738DiVA, id: diva2:1581338
Available from: 2021-07-21 Created: 2021-07-21 Last updated: 2021-07-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1007/s10021-021-00642-8
In the same journal
Ecosystems (New York. Print)
Ecology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 120 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf