Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Indirect effects of climate change inhibit N2 fixation associated with the feathermoss Hylocomium splendens in subarctic tundra
Responsible organisation
2021 (English)In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 795, article id 148676Article in journal (Refereed) Published
Abstract [en]

Mosses can be responsible for up to 100% of net primary production in arctic and subarctic tundra, and their associations with diazotrophic cyanobacteria have an important role in increasing nitrogen (N) availability in these pristine ecosystems. Predictions about the consequences of climate change in subarctic environments point to increased N mineralization in soil and higher litter deposition due to warming. It is not clear yet how these indirect climate change effects impact moss-cyanobacteria associations and N2 fixation. This work aimed to evaluate the effects of increased N and litter input on biological N2 fixation rates associated with the feathermoss Hylocomium splendens from a tundra heath. H. splendens samples were collected near Abisko, northern Sweden, from a field experiment with annual additions of ammonium chloride and dried birch litter and the combination of both for three years. Samples were analyzed for N2 fixation, cyanobacterial colonization, C and N content and pH. Despite the high N additions, no significant differences in moss N content were found. However, differences between treatments were observed in N2 fixation rates, cyanobacterial colonization and pH, with the combined ammonium+litter treatment causing a significant reduction in the number of branch-colonizing cyanobacteria and N2 fixation, and ammonium additions significantly lowering moss pH. A significant, positive relationship was found between N2 fixation rates, moss colonization by cyanobacteria and pH levels, showing a clear drop in N2 fixation rates at lower pH levels even if larger cyanobacterial populations were present. These results suggest that increased N availability and litter deposition resulting from climate change not only interferes with N2 fixation directly, but also acidifies moss microhabitats and reduces the abundance of associated cyanobacteria, which could eventually impact the N cycle in the Subarctic.

Place, publisher, year, edition, pages
2021. Vol. 795, article id 148676
Keywords [en]
Feathermoss, Cyanobacteria, Climate change, Nitrogen fixation, Symbiosis, Arctic tundra
National Category
Ecology Climate Research
Identifiers
URN: urn:nbn:se:polar:diva-8728DOI: 10.1016/j.scitotenv.2021.148676OAI: oai:DiVA.org:polar-8728DiVA, id: diva2:1581323
Available from: 2021-07-20 Created: 2021-07-20 Last updated: 2021-07-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://www.sciencedirect.com/science/article/pii/S0048969721037487
In the same journal
Science of the Total Environment
EcologyClimate Research

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 330 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf