Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of ambient climate and three warming treatments on fruit production in an alpine, subarctic meadow community
Show others and affiliations
Responsible organisation
2021 (English)In: American Journal of Botany, ISSN 0002-9122, E-ISSN 1537-2197, Vol. 108, no 3, p. 411-422Article in journal (Refereed) Published
Abstract [en]

Premise Climate change is having major impacts on alpine and arctic regions, and inter-annual variations in temperature are likely to increase. How increased climate variability will impact plant reproduction is unclear. Methods In a 4-year study on fruit production by an alpine plant community in northern Sweden, we applied three warming regimes: (1) a static level of warming with open-top chambers (OTC), (2) press warming, a yearly stepwise increase in warming, and (3) pulse warming, a single-year pulse event of higher warming. We analyzed the relationship between fruit production and monthly temperatures during the budding period, fruiting period, and whole fruit production period and the effect of winter and summer precipitation on fruit production. Results Year and treatment had a significant effect on total fruit production by evergreen shrubs, Cassiope tetragona, and Dryas octopetala, with large variations between treatments and years. Year, but not treatment, had a significant effect on deciduous shrubs and graminoids, both of which increased fruit production over the 4 years, while forbs were negatively affected by the press warming, but not by year. Fruit production was influenced by ambient temperature during the previous-year budding period, current-year fruiting period, and whole fruit production period. Minimum and average temperatures were more important than maximum temperature. In general, fruit production was negatively correlated with increased precipitation. Conclusions These results indicate that predicted increased climate variability and increased precipitation due to climate change may affect plant reproductive output and long-term community dynamics in alpine meadow communities.

Place, publisher, year, edition, pages
John Wiley & Sons, Ltd , 2021. Vol. 108, no 3, p. 411-422
Keywords [en]
climatic events, experimental warming, global warming, plant reproduction, polar region, rain fall, plant reproductive success, tundra
National Category
Ecology Climate Research
Identifiers
URN: urn:nbn:se:polar:diva-8727DOI: 10.1002/ajb2.1631OAI: oai:DiVA.org:polar-8727DiVA, id: diva2:1581322
Available from: 2021-07-20 Created: 2021-07-20 Last updated: 2021-07-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1002/ajb2.1631
In the same journal
American Journal of Botany
EcologyClimate Research

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 437 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf