Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Observations of Electron Precipitation During Pulsating Aurora and Its Chemical Impact
Show others and affiliations
Responsible organisation
2020 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 125, no 6, article id e2019JA027713Article in journal (Refereed) Published
Abstract [en]

Pulsating auroras (PsAs) are low-intensity diffuse aurora, which switch on and off with a quasiperiodic oscillation period from a few seconds to ?10 s. They are predominantly observed after magnetic midnight, during the recovery phase of substorms and at the equatorward boundary of the auroral oval. PsAs are caused by precipitating energetic electrons, which span a wide range of energies between tens and hundreds of keV. Such energetic PsA electrons will deposit their energy at mesospheric altitudes and induce atmospheric chemical changes. To examine the effects of energetic PsA electrons on the atmosphere, we first collect electron flux and energy measurements from low-latitude spacecraft to construct a typical energy spectrum of precipitating electrons during PsA. Among the 840 PsA events identified using ground-based auroral all-sky camera (ASC) network over the Fennoscandian region, 253 events were observed by DMSP, POES, and FAST spacecraft over the common field of view of five ASCs. The combined measurements from these spacecraft enable us to obtain an energy spectrum consisting of nonrelativistic and relativistic (30 eV to 1,000 keV) electrons during PsA. The median spectrum was found to be in good agreement with earlier estimates of the PsA spectra. We then use the Sodankylä Ion-neutral Chemistry (SIC) model to assess the chemical effect of PsA electrons. The observed extreme and median spectra of PsA produce a significant depletion in the mesospheric odd oxygen concentration up to 78%.

Place, publisher, year, edition, pages
John Wiley & Sons, Ltd , 2020. Vol. 125, no 6, article id e2019JA027713
Keywords [en]
precipitating electrons, aurora, middle atmosphere
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:polar:diva-8629DOI: 10.1029/2019JA027713OAI: oai:DiVA.org:polar-8629DiVA, id: diva2:1519389
Conference
2021/01/18
Available from: 2021-01-18 Created: 2021-01-18 Last updated: 2021-01-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1029/2019JA027713
In the same journal
Journal of Geophysical Research - Space Physics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 95 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf