Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Separating direct and indirect effects of rising temperatures on biogenic volatile emissions in the Arctic
Show others and affiliations
2020 (English)In: Proceedings of the National Academy of Sciences, ISSN 0027-8424, Vol. 117, no 51, p. 32476-32483Article in journal (Refereed) Published
Abstract [en]

Plants release to the atmosphere reactive gases, so-called volatile organic compounds (VOCs). The release of VOCs from vegetation is temperature-dependent and controlled by vegetation composition because different plant species release a distinct blend of VOCs. We used modelling approaches on ecosystem VOC release data collected across the Arctic, which is experiencing both rapid warming and vegetation changes. We show that warming strongly stimulates release of plant-derived VOCs and that vegetation changes also increase VOC release, albeit less than temperature directly, and with large geographic differences in the Pan-Arctic area. The increasing VOC flux from the Arctic tundra to the atmosphere may have implications via climate feedbacks, for example, through particle and cloud formation in these regions with low anthropogenic influence.Volatile organic compounds (VOCs) are released from biogenic sources in a temperature-dependent manner. Consequently, Arctic ecosystems are expected to greatly increase their VOC emissions with ongoing climate warming, which is proceeding at twice the rate of global temperature rise. Here, we show that ongoing warming has strong, increasing effects on Arctic VOC emissions. Using a combination of statistical modeling on data from several warming experiments in the Arctic tundra and dynamic ecosystem modeling, we separate the impacts of temperature and soil moisture into direct effects and indirect effects through vegetation composition and biomass alterations. The indirect effects of warming on VOC emissions were significant but smaller than the direct effects, during the 14-y model simulation period. Furthermore, vegetation changes also cause shifts in the chemical speciation of emissions. Both direct and indirect effects result in large geographic differences in VOC emission responses in the warming Arctic, depending on the local vegetation cover and the climate dynamics. Our results outline complex links between local climate, vegetation, and ecosystem–atmosphere interactions, with likely local-to-regional impacts on the atmospheric composition.

Place, publisher, year, edition, pages
National Academy of Sciences , 2020. Vol. 117, no 51, p. 32476-32483
National Category
Biological Sciences Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:polar:diva-8575DOI: 10.1073/pnas.2008901117PubMedID: 33257556OAI: oai:DiVA.org:polar-8575DiVA, id: diva2:1518887
Note

All data and R scripts used in this manuscript are publicly available and deposited in the Dryad Digital Repository (https://doi.org/10.5061/dryad.kh189323t).

Available from: 2021-01-17 Created: 2021-01-17 Last updated: 2021-01-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedhttp://www.pnas.org/content/117/51/32476.abstract
Biological SciencesEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 47 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf