Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fabry-Perot Interferometer Observations of Thermospheric Horizontal Winds During Magnetospheric Substorms
Show others and affiliations
Responsible organisation
2019 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 124, no 5, p. 3709-3728Article in journal (Refereed) Published
Abstract [en]

The high-latitude ionosphere-thermosphere system is strongly affected by the magnetospheric energy input during magnetospheric substorms. In this study, we investigate the response of the upper thermospheric winds to four substorm events by using the Fabry-Perot interferometer at Troms?, Norway, the International Monitor for Auroral Geomagnetic Effects magnetometers, the EISCAT radar, and an all-sky camera. The upper thermospheric winds had distinct responses to substorm phases. During the growth phase, westward acceleration of the wind was observed in the premidnight sector within the eastward electrojet region. We suggest that the westward acceleration of the neutral wind is caused by the ion drag force associated with the large-scale westward plasma convection within the eastward electrojet. During the expansion phase, the zonal wind had a prompt response to the intensification of the westward electrojet (WEJ) overhead Troms?. The zonal wind was accelerated eastward, which is likely to be associated with the eastward plasma convection within the substorm current wedge. During the expansion and recovery phases, the meridional wind was frequently accelerated to the southward direction, when the majority of the substorm WEJ current was located on the poleward side of Troms?. We suggest that this meridional wind acceleration is related to a pressure gradient produced by Joule heating within the substorm WEJ region. In addition, strong atmospheric gravity waves during the expansion and the recovery phases were observed.

Place, publisher, year, edition, pages
John Wiley & Sons, Ltd , 2019. Vol. 124, no 5, p. 3709-3728
Keywords [en]
upper thermospheric winds, magnetospheric substorms, ionosphere-thermosphere coupling, auroral electrojets, Fabry-Perot interferometer, EISCAT incoherent scatter radar
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:polar:diva-8366DOI: 10.1029/2018JA026241OAI: oai:DiVA.org:polar-8366DiVA, id: diva2:1395871
Available from: 2020-02-24 Created: 2020-02-24 Last updated: 2020-02-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1029/2018JA026241
In the same journal
Journal of Geophysical Research - Space Physics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf