Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Controls on Dissolved Organic Carbon Bioreactivity in River Systems
Show others and affiliations
Responsible organisation
2019 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 9, no 1, article id 14897Article in journal (Refereed) Published
Abstract [en]

Inland waters transport, transform and retain significant amounts of dissolved organic carbon (DOC) that may be biologically reactive (bioreactive) and thus potentially degraded into atmospheric CO2. Despite its global importance, relatively little is known about environmental controls on bioreactivity of DOC as it moves through river systems with varying water residence time (WRT). Here we determined the influence of WRT and landscape properties on DOC bioreactivity in 15 Swedish catchments spanning a large geographical and environmental gradient. We found that the short-term bioreactive pools (0–6 d of decay experiments) were linked to high aquatic primary productivity that, in turn, was stimulated by phosphorus loading from forested, agricultural and urban areas. Unexpectedly, the percentage of long-term bioreactive DOC (determined in 1-year experiments) increased with WRT, possibly due to photo-transformation of recalcitrant DOC from terrestrial sources into long-term bioreactive DOC with relatively lower aromaticity. Thus, despite overall decreases in DOC during water transit through the inland water continuum, DOC becomes relatively more bioreactive on a long time-scale. This increase in DOC bioreactivity with increasing WRT along the freshwater continuum has previously been overlooked. Further studies are needed to explain the processes and mechanisms behind this pattern on a molecular level.

Place, publisher, year, edition, pages
2019. Vol. 9, no 1, article id 14897
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:polar:diva-8344DOI: 10.1038/s41598-019-50552-yOAI: oai:DiVA.org:polar-8344DiVA, id: diva2:1395574
Available from: 2020-02-24 Created: 2020-02-24 Last updated: 2025-06-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1038/s41598-019-50552-y
In the same journal
Scientific Reports
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 91 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf