Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A lacustrine GDGT-temperature calibration from the Scandinavian Arctic to Antarctic: Renewed potential for the application of GDGT-paleothermometry in lakes
Show others and affiliations
Responsible organisation
2011 (English)In: Geochimica et Cosmochimica Acta, ISSN 0016-7037, E-ISSN 1872-9533, Vol. 75, no 20, p. 6225-6238Article in journal (Refereed) Published
Abstract [en]

Quantitative climate reconstructions are fundamental to understand long-term trends in natural climate variability and to test climate models used to predict future climate change. Recent advances in molecular geochemistry have led to calibrations using glycerol dialkyl glycerol tetraethers (GDGTs), a group of temperature-sensitive membrane lipids found in Archaea and bacteria. GDGTs have been used to construct temperature indices for oceans (TEX86 index) and soils (MBT/CBT index). The aim of this study is to examine GDGT-temperature relationships and assess the potential of constructing a GDGT-based palaeo-thermometer for lakes. We examine GDGT-temperature relationships using core top sediments from 90 lakes across a north–south transect from the Scandinavian Arctic to Antarctica including sites from Finland, Sweden, Siberia, the UK, Austria, Turkey, Ethiopia, Uganda, Chile, South Georgia and the Antarctic Peninsula. We examine a suite of 15 GDGTs, including compounds used in the TEX86 and MBT/CBT indices and reflecting the broad range of GDGT inputs to small lake systems.

GDGTs are present in varying proportions in all lakes examined. The TEX86 index is not applicable to our sites because of the large relative proportions of soil derived and methanogenic components. Similarly, the MBT/CBT index is also not applicable and predicts temperatures considerably lower than those measured. We examine relationships between individual GDGT compounds and temperature, pH, conductivity and water depth. Temperature accounts for a large and statistically independent fraction of variation in branched GDGT composition. We propose a GDGT-temperature regression model with high accuracy and precision (R2 = 0.88; RMSE = 2.0 °C; RMSEP = 2.1 °C) for use in lakes based on a subset of branched GDGT compounds and highlight the potential of this new method for reconstructing past temperatures using lake sediments.

Place, publisher, year, edition, pages
2011. Vol. 75, no 20, p. 6225-6238
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-8216DOI: 10.1016/j.gca.2011.07.042OAI: oai:DiVA.org:polar-8216DiVA, id: diva2:1297520
Available from: 2019-03-20 Created: 2019-03-20 Last updated: 2019-03-20

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://www.sciencedirect.com/science/article/pii/S0016703711004406
In the same journal
Geochimica et Cosmochimica Acta
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf