Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nitrogen Uptake During Fall, Winter and Spring Differs Among Plant Functional Groups in a Subarctic Heath Ecosystem
Show others and affiliations
Responsible organisation
2012 (English)In: Ecosystems (New York. Print), ISSN 1432-9840, E-ISSN 1435-0629, Vol. 15, no 6, p. 927-939Article in journal (Refereed) Published
Abstract [en]

Nitrogen (N) is a critical resource for plant growth in tundra ecosystems, and species differences in the timing of N uptake may be an important feature regulating community composition and ecosystem productivity. We added 15N-labelled glycine to a subarctic heath tundra dominated by dwarf shrubs, mosses and graminoids in fall, and investigated its partitioning among ecosystem components at several time points (October, November, April, May, June) through to the following spring/early summer. Soil microbes had acquired 65 ± 7% of the 15N tracer by October, but this pool decreased through winter to 37 ± 7% by April indicating significant microbial N turnover prior to spring thaw. Only the evergreen dwarf shrubs showed active 15N acquisition before early May indicating that they had the highest potential of all functional groups for acquiring nutrients that became available in early spring. The faster-growing deciduous shrubs did not resume 15N acquisition until after early May indicating that they relied more on nitrogen made available later during the spring/early summer. The graminoids and mosses had no significant increases in 15N tracer recovery or tissue 15N tracer concentrations after the first harvest in October. However, the graminoids had the highest root 15N tracer concentrations of all functional groups in October indicating that they primarily relied on N made available during summer and fall. Our results suggest a temporal differentiation among plant functional groups in the post-winter resumption of N uptake with evergreen dwarf shrubs having the highest potential for early N uptake, followed by deciduous dwarf shrubs and graminoids.

Place, publisher, year, edition, pages
2012. Vol. 15, no 6, p. 927-939
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-8213DOI: 10.1007/s10021-012-9555-xOAI: oai:DiVA.org:polar-8213DiVA, id: diva2:1297487
Available from: 2019-03-20 Created: 2019-03-20 Last updated: 2019-03-20

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1007/s10021-012-9555-x
In the same journal
Ecosystems (New York. Print)
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf