The ectomycorrhizal communities in alpine habitats have been relatively little studied. As global change is predicted to have a large impact in Arctic and alpine environments, it is important to document the fungi of these climatic regions to monitor changes and to understand upcoming successions. This study investigates the ectomycorrhizal community of Dryas octopetala and Salix reticulata on cliff ledges in a mid-alpine setting using the internal transcribed spacer region of nuclear ribosomal DNA for the identification of the fungal component of ectomycorrhizal root tips. It is shown that the community is relatively species rich, with 74 molecular operational taxonomic units (MOTUs)/species, and that it is dominated by Cenococcum geophilum, Thelephoraceae spp., Cortinarius spp., and Sebacinales spp. Furthermore, the dominating species have low specificity regarding the tested hosts and seem likely to be able to facilitate the succession of the alpine tundra to subalpine forest by serving as mycorrhizal partners for establishing pioneer trees.