Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tree recruitment above the treeline and potential for climate-driven treeline change
Responsible organisation
2009 (English)In: Journal of Vegetation Science, Vol. 20, no 6, p. 1133-1144Article in journal (Refereed) Published
Abstract [en]

Abstract Questions: How do population structure and recruitment characteristics of Betula saplings beyond the treeline vary among climatic regions, and what is the potential for development into tree-sized individuals with interacting grazing pressure? Location: Scandes Mountains. Methods: Sapling characteristics of Betula pubescens subsp. tortuosa, their topographic position above the treeline, growth habitat and evidence of recent grazing was investigated in three areas with a long continuous grazing history, along a latitudinal gradient (62‐69°N).Results: Saplings were common up to 100 m above the treeline in all areas. The northern areas were characterised by small (<30 cm) and young (mean 14 years old)saplings in exposed micro-topographic locations unfavourable to long-term survival. In the southern area, broad height (2-183€ƒcm) and age (4-95 years; mean 32 years) distributions were found in sheltered locations. Age declined with altitude in all areas. Sapling growth rate varied within and between areas, and the age × height interaction was significant only in the southern area. Growth rates decreased from south to north and indicated a considerable time required to reach tree size under prevailing conditions. Conclusions: Regional differences can be attributed to climatic differences, however, interacting biotic and abiotic factors such as micro-topography, climate and herbivory, mutually affect the characteristics of birch saplings. In view of the long time needed to reach tree size, the generally expected evident and fast treeline advance in response to climate warming may not be a likely short-term scenario. The sapling pool in the southern region possesses strongest potential for treeline advance.

Place, publisher, year, edition, pages
2009. Vol. 20, no 6, p. 1133-1144
Keywords [en]
Alpine zone, Browsing, Climate change, Mountain birch, Saplings, Treeline dynamics
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-8083DOI: 10.1111/j.1654-1103.2009.01114.xOAI: oai:DiVA.org:polar-8083DiVA, id: diva2:1287976
Available from: 2019-02-12 Created: 2019-02-12 Last updated: 2019-02-12

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1654-1103.2009.01114.x
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf