Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Links between Terrestrial Primary Production and Bacterial Production and Respiration in Lakes in a Climate Gradient in Subarctic Sweden
Responsible organisation
2008 (English)In: Ecosystems (New York. Print), ISSN 1432-9840, E-ISSN 1435-0629, Vol. 11, no 3, p. 367-376Article in journal (Refereed) Published
Abstract [en]

We compared terrestrial net primary production (NPP) and terrestrial export of dissolved organic carbon (DOC) with lake water heterotrophic bacterial activity in 12 headwater lake catchments along an altitude gradient in subarctic Sweden. Modelled NPP declined strongly with altitude and annual air temperature decreases along the altitude gradient (6°C between the warmest and the coldest catchment). Estimated terrestrial DOC export to the lakes was closely correlated to NPP. Heterotrophic bacterial production (BP) and respiration (BR) were mainly based on terrestrial organic carbon and strongly correlated with the terrestrial DOC export. Excess respiration over PP of the pelagic system was similar to net emission of CO2 in the lakes. BR and CO2 emission made up considerably higher shares of the terrestrial DOC input in warm lakes than in cold lakes, implying that respiration and the degree of net heterotrophy in the lakes were dependant not only on terrestrial export of DOC, but also on characteristics in the lakes which changed along the gradient and affected the bacterial metabolization of allochthonous DOC. The study showed close links between terrestrial primary production, terrestrial DOC export and bacterial activity in lakes and how these relationships were dependant on air temperature. Increases in air temperature in high latitude unproductive systems might have considerable consequences for lake water productivity and release of CO2 to the atmosphere, which are ultimately determined by terrestrial primary production.

Place, publisher, year, edition, pages
2008. Vol. 11, no 3, p. 367-376
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-8024DOI: 10.1007/s10021-008-9127-2OAI: oai:DiVA.org:polar-8024DiVA, id: diva2:1285861
Available from: 2019-02-05 Created: 2019-02-05 Last updated: 2019-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1007/s10021-008-9127-2
In the same journal
Ecosystems (New York. Print)
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf