Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Soil organic carbon depletion and degradation in surface soil after long-term non-growing season warming in High Arctic Svalbard
Show others and affiliations
Responsible organisation
2019 (English)In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 646, p. 158-167Article in journal (Refereed) Published
Abstract [en]

Arctic tundra active-layer soils are at risk of soil organic carbon (SOC) depletion and degradation upon global climate warming because they are in a stage of relatively early decomposition. Non-growing season (NGS) warming is particularly pronounced, and observed increases of CO2 emissions during experimentally warmed NGSs give concern for great SOC losses to the atmosphere. Here, we used snow fences in Arctic Spitsbergen dwarf shrub tundra to simulate 1.86 °C NGS warming for 9 consecutive years, while growing season temperatures remained unchanged. In the snow fence treatment, the 4-11 cm thick A-horizon had a 2% lower SOC concentration and a 0.48 kg C m−2 smaller pool size than the controls, indicating SOC pool depletion. The snow fence treatment's A-horizon's alkyl/O-alkyl ratio was also significantly increased, indicating an advance of SOC degradation. The underlying 5 cm of B/C-horizon did not show these effects. Our results support the hypothesis that SOC depletion and degradation are connected to the long-term transience of observed ecosystem respiration (ER) increases upon soil warming. We suggest that the bulk of warming induced ER increases may originate from surface and not deep active layer or permafrost horizons. The observed losses of SOC might be significant for the ecosystem in question, but are in magnitude comparatively small relative to anthropogenic greenhouse gas enrichment of the atmosphere. We conclude that a positive feedback of carbon losses from surface soils of Arctic dwarf shrub tundra to anthropogenic forcing will be minor, but not negligible.

Place, publisher, year, edition, pages
2019. Vol. 646, p. 158-167
Keywords [en]
Snow fence, NMR, Carbon loss, Decomposition, Anthropogenic C emission feedback, Tundra
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-7861OAI: oai:DiVA.org:polar-7861DiVA, id: diva2:1282680
Available from: 2019-01-25 Created: 2019-01-25 Last updated: 2019-01-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

http://www.sciencedirect.com/science/article/pii/S0048969718326366
In the same journal
Science of the Total Environment
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf