Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Simulated global change: contrasting short and medium term growth and reproductive responses of a common alpine/Arctic cushion plant to experimental warming and nutrient enhancement
Responsible organisation
2014 (English)In: SpringerPlus, E-ISSN 2193-1801, Vol. 3, no 1Article in journal (Refereed) Published
Abstract [en]

Cushion plants are important components of alpine and Arctic plant communities around the world. They fulfill important roles as facilitators, nurse plants and foundation species across trophic levels for vascular plants, arthropods and soil microorganisms, the importance of these functions increasing with the relative severity of the environment. Here we report results from one of the few experimental studies simulating global change impacts on cushion plants; a factorial experiment with warming and nutrient enhancement that was applied to an alpine population of the common nurse plant, Silene acaulis, in sub-arctic Sweden. Experimental perturbations had significant short-term impacts on both stem elongation and leaf length. S. acaulis responded quickly by increasing stem elongation and (to a lesser extent) leaf length in the warming, nutrient, and the combined warming and nutrient enhancements. Cover and biomass also initially increased in response to the perturbations. However, after the initial positive short-term responses, S. acaulis cover declined in the manipulations, with the nutrient and combined warming and nutrient treatments having largest negative impact. No clear patterns were found for fruit production. Our results show that S. acaulis living in harsh environments has potential to react quickly when experiencing years with favorable conditions, and is more responsive to nutrient enhancement than to warming in terms of vegetative growth. While these conditions have an initial positive impact, populations experiencing longer-term increased nutrient levels will likely be negatively affected.

Place, publisher, year, edition, pages
2014. Vol. 3, no 1
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:polar:diva-4133DOI: 10.1186/2193-1801-3-157OAI: oai:DiVA.org:polar-4133DiVA, id: diva2:1170781
Available from: 2018-01-04 Created: 2018-01-04 Last updated: 2023-06-13

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1186/2193-1801-3-157
In the same journal
SpringerPlus
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 180 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf